Advertisement

A model aided understanding of spot pattern formation in chemotactic E. coli colonies

  • Akihiro Aotani
  • Masayasu MimuraEmail author
  • Thomas Mollee
Original Paper

Abstract

Colonies of mutant E. coli strains, when inoculated in the centre of a plate, form highly symmetric, stable spot patterns. These spot patterns are only observed in chemotactic E. coli strains, i.e. strains that bias their motion so that cell populations move up gradients of a chemical in the cells’ local environment. It is an important question whether these patterns are due to genetic control or self-organization. Here we present a macroscopic continuum model of E. coli pattern formation that incorporates cell diffusion, chemotaxis, population growth and conversion to an inactive state. This model satisfactorily reproduces the observed spot patterns, supporting the view that these patterns are indeed a result of self-organization, and allows us to infer plausible minimal mechanisms that generate the observed patterns.

Keywords

Chemotaxis Bacterial colony patterns Self-organization Mathematical modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Jacob E., Cohen I., Levine H.: Cooperative self-organization of microorganisms. Adv. Phys. 49(4), 395–554 (2000)CrossRefGoogle Scholar
  2. 2.
    Ben-Jacob E., Cohen I., Schochet O., Aranson I., Levine H., Tsimring L.: Complex bacterial patterns. Nature 373, 566–567 (1995)CrossRefGoogle Scholar
  3. 3.
    Berg H.C.: E. coli in Motion. Springer, Berlin (2003)Google Scholar
  4. 4.
    Brenner M.P., Levitov L.S., Budrene E.O.: Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J. 74, 1677–1693 (1998)CrossRefGoogle Scholar
  5. 5.
    Bruno W.J.: Patterns that grow (in a dish). CNLS Newslett. 82, 1–12 (1992)Google Scholar
  6. 6.
    Budrene E.O., Berg H.C.: Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991)CrossRefGoogle Scholar
  7. 7.
    Budrene E.O., Berg H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)CrossRefGoogle Scholar
  8. 8.
    Funaki M., Mimura M., Tsujikawa T.: Travelong front solutions arising in the chemotaxis-growth model. Int. Free Bound. 8, 223–245 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hillen T., Painter K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Horstmann D.: From 1070 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresber. Dtsch. Math.-Ver. 105, 103–165 (2003)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Htoo K.P., Mimura M., Takagi I.: Global solutions to a one-dimensional nonlinear parabolic system modeling colonial formation by chemotactic bacteria. Adv. Stud. Pure Math. 47(2), 613–622 (2007)Google Scholar
  12. 12.
    Kawasaki K., Mochizuki A., Shigesada N.: Mathematical models of pttern formation in bacterial colonies. Control Meas. 34, 1–26 (1995)Google Scholar
  13. 13.
    Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)CrossRefGoogle Scholar
  14. 14.
    Mimura M., Sakaguchi H., Matsushita M.: Reaction-diffusion modelling of bacterial colony patterns. Phys. A 282, 283–303 (2000)CrossRefGoogle Scholar
  15. 15.
    Mimura M., Tsujikawa T.: Aggregataing pattern dynamics in a chemotaxis model including growth. Phys. A 230, 499–543 (1996)CrossRefGoogle Scholar
  16. 16.
    Mittal N., Budrene E.O., Brenner M.P., van Oudenaarden A.: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA 100(23), 13259–13263 (2003)CrossRefGoogle Scholar
  17. 17.
    Osaki K., Yagi A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcialaj Ekvacioj 44, 441–469 (2001)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Perthame B.: Transport Equations in Biology. Birkhäuser, Basel (2007)zbMATHGoogle Scholar
  19. 19.
    Ploezhaev A.A., Pashkov R.A., Lobanov A.I., Petrov I.B.: Spatial patterns formed by chemotactic bacteria Escherichia coli. Int. J. Dev. Biol. 50, 309–314 (2006)CrossRefGoogle Scholar
  20. 20.
    Schaaf R.: Stationary solutions of chemotaxis system. Trans. Am. Math. Soc. 292, 531–556 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tsimring L., Levine H., Aranson I., Ben-Jacob E., Cohen I., Shochet O., Reynolds W.N.: Aggregation patterns in stressed bactreria. Phys. Rev. Lett. 75(9), 1859–1862 (1995)CrossRefGoogle Scholar
  22. 22.
    Tyson R., Lubkin S.R., Murray J.D.: A minimal mechanism for bacterial pattern formation. Proc. R. Soc. Lond. B 266, 299–304 (1999)CrossRefGoogle Scholar
  23. 23.
    Woodward D.E., Tyson R., Myerscough M.R., Murray J.D., Budrene E.O., Burg H.C.: Spatio- temporal patterns generated by Salmonella typhimurium. Biophys. J. 68, 2181–2189 (1995)CrossRefGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer 2010

Authors and Affiliations

  • Akihiro Aotani
    • 1
  • Masayasu Mimura
    • 2
    Email author
  • Thomas Mollee
    • 3
  1. 1.Hiroshima University High SchoolHiroshimaJapan
  2. 2.Meiji Institute for Advanced Study of Mathematical SciencesMeiji UniversityKawasakiJapan
  3. 3.Department of MathematicsUniversity of QueenslandBrisbaneAustralia

Personalised recommendations