Advertisement

A numerical method for polynomial eigenvalue problems using contour integral

  • Junko Asakura
  • Tetsuya SakuraiEmail author
  • Hiroto Tadano
  • Tsutomu Ikegami
  • Kinji Kimura
Original Paper Area 2

Abstract

We propose a numerical method using contour integral to solve polynomial eigenvalue problems (PEPs). The method finds eigenvalues contained in a certain domain which is defined by a surrounding integral path. By evaluating the contour integral numerically along the path, the method reduces the original PEP into a small generalized eigenvalue problem, which has the identical eigenvalues in the domain. When the contour integral is approximated numerically, eigenvalues on the periphery of the path are also obtained. Error analysis shows that, even though condition numbers of those exterior eigenvalues can be huge, the interior eigenvalues are calculated less erroneously. Four numerical examples are presented, which confirm the theoretical predictions.

Keywords

Polynomial eigenvalue problem Matrix polynomial Contour integral Projection method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bai Z., Demmel J., Dongarra J., Ruhe A., Van Der Vorst H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)zbMATHGoogle Scholar
  2. 2.
    Bai Z., Su Y.: SOAR: a second order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26, 640–659 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beckermann B., Golub G.H., Labahn G.: On the numerical condition of a generalized Hankel eigenvalue problem. Numer. Math. 106, 41–68 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: A Collection of Nonlinear Eigenvalue Problem. MIMS EPrint 2008.40 (2008)Google Scholar
  5. 5.
    Frayssé V., Toumazou V.: A note on the normwise perturbation theory for the regular generalized eigenvalueproblem Ax =  λ Bx. Numer. Linear Algebra Appl. 5, 1–10 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gantmacher, F.R.: The Theory of Matrices, vols. 1–2. Chelsea Publishing Company, New York (1977)Google Scholar
  7. 7.
    Gel’fand, I.M.: Lecture on Linear Algebra. Dover Publications, INC, Mineola (1961)Google Scholar
  8. 8.
    Gohberg I., Kaashoek M.A., Lancaster P.: General theory of regular matrix polynomials and band toeplitz operators. Integr. Equ. Oper. Theory 11, 776–882 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gohberg I., Lancaster P., Rodman F.: Matrix polynomials. Academic Press, New York (1982)zbMATHGoogle Scholar
  10. 10.
    Heeg, R.S.: Stability and transition of attachment-line flow, Ph.D.thesis, Universiteit Twente, Enschede, the Netherlands (1998)Google Scholar
  11. 11.
    Higham D.J., Higham N.J.: Structured backward error and condition of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 20, 493–512 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Higham N.J., Tisseur F.: Bounds for eigenvalues of matrix polynomials. Linear Algebra Appl. 358, 5–22 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hwang T., Lin W., Liu J., Wang W.: Jacobi–Davidson methods for cubic eigenvalue problems. Numer. Linear Algebra Appl. 12, 605–624 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method. J. Comput. Appl. Math. (2010, in press)Google Scholar
  15. 15.
    Mackey D.S., Mackey N., Mehl C., Mehrmann V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mehrmann V., Watkins D.: Polynomial eigenvalue problems with Hamiltonian structure. Electron. Trans. Numer. Anal. 13, 106–118 (2002)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Pereira E.: On solvents of matrix polynomials. Appl. Numer. Math. 47, 197–208 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sakurai T., Sugiura H.: A projection method for generalized eigenvalue problems. J. Comput. Appl. Math. 159, 119–128 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sleijpen G.L.G., Booten A.G.L., Fokkema D.R., Van Der Vorst H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36, 595–633 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tisseur F., Meerbergen K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–286 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tyrtyshnikov, E.E.: How bad are Hankel matrices? Numer. Math. 67, 261–269 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer 2010

Authors and Affiliations

  • Junko Asakura
    • 1
  • Tetsuya Sakurai
    • 2
    Email author
  • Hiroto Tadano
    • 2
  • Tsutomu Ikegami
    • 3
  • Kinji Kimura
    • 4
  1. 1.Research CenterSquare Enix Co. Ltd.TokyoJapan
  2. 2.Department of Computer ScienceUniversity of TsukubaTsukubaJapan
  3. 3.Information Technology Research Institute, AISTTsukubaJapan
  4. 4.Department of Applied Mathematics and PhysicsKyoto UniversityKyotoJapan

Personalised recommendations