Skip to main content
Log in

A numerical method for polynomial eigenvalue problems using contour integral

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose a numerical method using contour integral to solve polynomial eigenvalue problems (PEPs). The method finds eigenvalues contained in a certain domain which is defined by a surrounding integral path. By evaluating the contour integral numerically along the path, the method reduces the original PEP into a small generalized eigenvalue problem, which has the identical eigenvalues in the domain. When the contour integral is approximated numerically, eigenvalues on the periphery of the path are also obtained. Error analysis shows that, even though condition numbers of those exterior eigenvalues can be huge, the interior eigenvalues are calculated less erroneously. Four numerical examples are presented, which confirm the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai Z., Demmel J., Dongarra J., Ruhe A., Van Der Vorst H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  2. Bai Z., Su Y.: SOAR: a second order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26, 640–659 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beckermann B., Golub G.H., Labahn G.: On the numerical condition of a generalized Hankel eigenvalue problem. Numer. Math. 106, 41–68 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: A Collection of Nonlinear Eigenvalue Problem. MIMS EPrint 2008.40 (2008)

  5. Frayssé V., Toumazou V.: A note on the normwise perturbation theory for the regular generalized eigenvalueproblem Ax =  λ Bx. Numer. Linear Algebra Appl. 5, 1–10 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gantmacher, F.R.: The Theory of Matrices, vols. 1–2. Chelsea Publishing Company, New York (1977)

  7. Gel’fand, I.M.: Lecture on Linear Algebra. Dover Publications, INC, Mineola (1961)

  8. Gohberg I., Kaashoek M.A., Lancaster P.: General theory of regular matrix polynomials and band toeplitz operators. Integr. Equ. Oper. Theory 11, 776–882 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gohberg I., Lancaster P., Rodman F.: Matrix polynomials. Academic Press, New York (1982)

    MATH  Google Scholar 

  10. Heeg, R.S.: Stability and transition of attachment-line flow, Ph.D.thesis, Universiteit Twente, Enschede, the Netherlands (1998)

  11. Higham D.J., Higham N.J.: Structured backward error and condition of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 20, 493–512 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Higham N.J., Tisseur F.: Bounds for eigenvalues of matrix polynomials. Linear Algebra Appl. 358, 5–22 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hwang T., Lin W., Liu J., Wang W.: Jacobi–Davidson methods for cubic eigenvalue problems. Numer. Linear Algebra Appl. 12, 605–624 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method. J. Comput. Appl. Math. (2010, in press)

  15. Mackey D.S., Mackey N., Mehl C., Mehrmann V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mehrmann V., Watkins D.: Polynomial eigenvalue problems with Hamiltonian structure. Electron. Trans. Numer. Anal. 13, 106–118 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Pereira E.: On solvents of matrix polynomials. Appl. Numer. Math. 47, 197–208 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sakurai T., Sugiura H.: A projection method for generalized eigenvalue problems. J. Comput. Appl. Math. 159, 119–128 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sleijpen G.L.G., Booten A.G.L., Fokkema D.R., Van Der Vorst H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36, 595–633 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tisseur F., Meerbergen K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–286 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tyrtyshnikov, E.E.: How bad are Hankel matrices? Numer. Math. 67, 261–269 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Sakurai.

About this article

Cite this article

Asakura, J., Sakurai, T., Tadano, H. et al. A numerical method for polynomial eigenvalue problems using contour integral. Japan J. Indust. Appl. Math. 27, 73–90 (2010). https://doi.org/10.1007/s13160-010-0005-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-010-0005-x

Keywords

Navigation