Skip to main content
Log in

Polynomial time approximate or perfect samplers for discretized Dirichlet distribution

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose two Markov chains for sampling random vectors that are distributed according to discretized Dirichlet distribution. Their mixing rates are bounded by O(n 2 log Δ) and O(n 3 log Δ), where n is the dimension and 1/Δ is the grid size for discretization. Our second chain gives a perfect sampler that is based on monotone coupling from the past. We also report the results of simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in Markov chains. In: 38th Annual Symposium on Foundations of Computer Science, pp. 223–231. IEEE, San Alimitos (1997)

  2. Bubley R.: Randomized Algorithms: Approximation, Generation, and Counting. Springer, New York (2001)

    MATH  Google Scholar 

  3. Burr T.L.: Quasi-equilibrium theory for the distribution of rare alleles in a subdivided population: justification and implications. Theor. Popul. Biol. 57, 297–306 (2000)

    Article  MATH  Google Scholar 

  4. Burr D., Doss H., Cooke G.E., Goldschmidt-Clermont P.J.: A meta-analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease. Stat. Med. 22, 1741–1760 (2003)

    Article  Google Scholar 

  5. Chiang J., Chib S., Narasimhan C.: Markov chain Monte Carlo and models of consideration set and parameter heterogeneity. J. Econom. 89, 223–248 (1999)

    Article  MATH  Google Scholar 

  6. Dyer M., Greenhill C.: Polynomial-time counting and sampling of two-rowed contingency tables. Theor. Comput. Sci. 246, 265–278 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dimakos X.K.: A guide to exact simulation. Int. Stat. Rev. 69, 27–48 (2001)

    Article  MATH  Google Scholar 

  8. Durbin R., Eddy R., Krogh A., Mitchison G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, London (1998)

    MATH  Google Scholar 

  9. Fill J.: An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl. Probab. 8, 131–162 (1988)

    MathSciNet  Google Scholar 

  10. Fill J., Machida M., Murdoch D., Rosenthal J.: Extension of Fill’s perfect rejection sampling algorithm to general chains. Random Struct. Algorithms 17, 290–316 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Graham J., Curran J., Weir B.S.: Conditional genotypic probabilities for microsatellite loci. Genetics 155, 1973–1980 (2000)

    Google Scholar 

  12. Kijima S., Matsui T.: Polynomial time perfect sampling algorithm for two-rowed contingency tables. Random Struct. Algorithms 29, 243–256 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kijima, S., Matsui, T.: Rapidly mixing chain and perfect sampler for logarithmic separable concave distributions on simplex. In: Proceedings of the 2005 International Conference on the Analysis of Algorithms (AofA). Discrete Mathematics and Computer Science, DMTCS Proceedings Series, vol. AD, pp. 369–380 (2005)

  14. Kitada S., Hayashi T., Kishino H.: Empirical Bayes procedure for estimating genetic distance between populations and effective population size. Genetics 156, 2063–2079 (2000)

    Google Scholar 

  15. Laval G., SanCristobal M., Chevalet C.: Maximum-likelihood and Markov chain Monte Carlo approaches to estimate inbreeding and effective size form allele frequency changes. Genetics 164, 1189–1204 (2003)

    Google Scholar 

  16. Martin R., Randall D.: Disjoint decomposition of Markov chains and sampling circuits in Cayley graphs. Comb. Probab. Comput. 15, 411–448 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Matsui, T., Motoki, M., Kamatani, N.: Polynomial time approximate sampler for discretized Dirichlet distribution. In: Proceedings of 14th International Symposium on Algorithms and Computation (ISAAC 2003). Lecture Notes in Computer Science, vol. 2906, pp. 676–685. Springer, Berlin (2003)

  18. Matsui T., Kijima S.: Polynomial time perfect sampler for discretized Dirichlet distribution. In: Tsubaki, H., Nishina, K., Yamada, S. (eds) The Grammar of Technology Development, pp. 179–199. Springer, Berlin (2008)

    Chapter  Google Scholar 

  19. Matsui T., Matsui Y., Ono Y.: Random generation of 2 × 2 × . . . × 2 × J contingency tables. Theor. Comput. Sci. 326, 117–135 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mersenne Twister Home Page. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/mt.html

  21. Niu T., Qin Z.S., Xu X., Liu J.S.: Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am. J. Hum. Genet. 70, 157–169 (2002)

    Article  Google Scholar 

  22. Pritchard J.K., Stephens M., Donnely P.: Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000)

    Google Scholar 

  23. Propp J., Wilson D.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9, 223–252 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Propp J., Wilson D.: How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms 27, 170–217 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Randall, D., Winkler, P.: Mixing points on an interval. In: Proceedings of the Second Workshop on Analytic Algorithms and Combinatorics, pp. 216–221, Vancouver (2005)

  26. Robert C.P.: The Bayesian Choice. Springer, New York (2001)

    MATH  Google Scholar 

  27. Wilson D.: How to couple from the past using a read-once source of randomness. Random Struct. Algorithms 16, 85–113 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Kijima.

Additional information

Some of the results on the approximate sampler described in this paper appeared without detailed discussions in the extended abstract [17] in the Proceedings of ISAAC 2003 (The 14th Annual International Symposium on Algorithms and Computation), and some of the results on the perfect sampler described in this paper appeared without computational experiences in the extended abstract [18] in the post conference book of The Grammar of Technology Development.

About this article

Cite this article

Matsui, T., Motoki, M., Kamatani, N. et al. Polynomial time approximate or perfect samplers for discretized Dirichlet distribution. Japan J. Indust. Appl. Math. 27, 91–123 (2010). https://doi.org/10.1007/s13160-010-0002-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-010-0002-0

Keywords

Navigation