Skip to main content
Log in

Fundamental solution method for two-dimensional Stokes flow problems with one-dimensional periodicity

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a fundamental solution method for two-dimensional Stokes flow problems with a one-dimensional infinite periodic array of obstacles. In the proposed method, we approximate the solution by a linear combination of periodic fundamental solutions of the Stokes flow equation. In terms of physics, this approximation illustrates Stokes flows due to forces acting on one-dimensional infinite periodic points. Numerical examples are included to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amano K.: A charge simulation method for numerical conformal mapping onto circular and radial slit domains. SIAM J. Sci. Comput. 19, 1169–1187 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amano K., Okano D., Ogata H., Shimohira H., Sugihara M.: A systematic scheme of numerical conformal mappings of unbounded multiply-connected domains by the charge simulation method (in Japanese). IPSJ J. 42, 385–395 (2001)

    MathSciNet  Google Scholar 

  3. Greengard L., Kropinski M.C.: Integral equation methods for Stokes flow in doubly-periodic domain. J. Eng. Math. 48, 157–170 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hasimoto H.: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array. J. Fluid Mech. 5, 317–328 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  5. Imai I.: Complex Analysis and Fluid Mechanics (in Japanese). Nihon Hyoronsha, Tokyo (1989)

    Google Scholar 

  6. Ishii K.: Viscous flow past multiple planar array of small spheres. J. Phys. Soc. Jpn. 46, 675–680 (1979)

    Article  Google Scholar 

  7. Liron N.: Fluid transport by cilia between parallel plates. J. Fluid Mech. 86, 705–726 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ogata H.: A fundamental solution method for three-dimensional Stokes flow problems with obstacles in a planar periodic array. J. Comp. Appl. Math. 189, 622–634 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ogata H., Amano K.: A fundamental solution method for three-dimensional viscous flow problems with obstacles in a periodic array. J. Comp. Appl. Math. 193, 302–318 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ogata H., Amano K., Sugihara M., Okano D.: A fundamental solution method for viscous flow problems with obstacles in a periodic array. J. Comp. Appl. Math. 152, 411–425 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ogata H., Okano D., Amano K.: Numerical conformal mapping of periodic structure domains. Jpn. J. Ind. Appl. Math. 19, 257–275 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sanchez-Sesma F.J., Rosenblueth E.: Ground motion at canyons of arbitrary shape under incident SH waves. Int. J. Earthq. Eng. Struct. Dyn. 7, 441–450 (1979)

    Article  Google Scholar 

  13. Singer H., Steinbigler H., Weiss P.: A charge simulation method for the calculation of high voltage fields. IEEE Trans. Power Apparatus Syst. PAS-93, 1660–1668 (1974)

    Article  Google Scholar 

  14. Steinbigler, H.: Dissertation. Tech. Univ. München (1969)

  15. Zick A.A., Homsy G.M.: Stokes flow through periodic array of spheres. J. Fluid Mech. 115, 13–26 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Ogata.

About this article

Cite this article

Ogata, H., Amano, K. Fundamental solution method for two-dimensional Stokes flow problems with one-dimensional periodicity. Japan J. Indust. Appl. Math. 27, 191–215 (2010). https://doi.org/10.1007/s13160-010-0001-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-010-0001-1

Keywords

Navigation