Diagenetic process as tool to diagnose paleo-environment conditions, bathymetry and oxygenation during Late Paleocene-Early Eocene in the Gafsa Basin

  • Abdel Majid Messadi
  • Besma Mardassi
  • Jamel Abdennaceur Ouali
  • Jamel Touir
Original Article

Abstract

Late Paleocene–Early Eocene deposits cropping out in Tamerza area were settled on a carbonate homoclinal ramp. Deposits which are ranged in six main facies record a gradual transition from intertidal to upper circatidal environment. Lateral variations in terms of facies and thickness infers to the main role of synsedimentary tectonics. The characterization of paleoenvironments was established in respect to the lithology, fauna content, sedimentary structures and diagenetic features. Detailed analysis of deposits shows that the diagenetic processes are reliable tools to reconstruct each depositional environment. Moreover, they bring out precious information concerning the chemical and physical parameters and the sedimentary dynamics of the studied interval. The early stage cementation is favored under low rates of sedimentation and a calm sea floor. The arrangement and the morphology of crystals permit to appreciate the bathymetry and to better characterize the depositional environment. Phosphogenesis seems in a tight relation with silicification requiring both an acidic environment. The occurrence of upwelling currents engendered the blooming of fauna guarantying test preservation after death and allowed to establish a linkage between fauna content and diagenetic features. Silicification processes concern test replacement and the genesis of chert beds included within the enclosing deposits. Micritization processes, occurring in the inner ramp, advocate calm environments and are engendered by endolithic algae, bacteria and fungi. The X-Ray diffraction shows the frequency of smectites associated with clinoptilolites, sepiolite and palygorskite. The clay paragenesis helps to identify several diagenetic contexts occurring under xeric and confined conditions.

Keywords

Diagenesis Paleo-environment Bathymetry Oxygenation Containment minerals Late Paleocene–Early Eocene 

Notes

Acknowledgements

The authors would like to thank the personnel of the Civil Engineering department at National Engineering School of Sfax (ENIS), the Physics Department of the Faculty of Science of Bizerte and the personnel of the Higher Institute of Biotechnology of Sfax for their technical support. I am grateful to A. Pearson and L. le-callonnec for the constructive discussions in the silica dissolution and preservation. We are also grateful to the anonymous reviewers and to the editor for the constructive comments.

Supplementary material

13146_2018_424_MOESM1_ESM.docx (32.4 mb)
Supplementary material 1 (DOCX 33169 kb)

References

  1. Abdessalam BN (1978) Etude palynologique et micropaléontologique de la sériephosphatée du bassin de Gafsa-Metlaoui (Tunisie). Application à la compréhension des mécanismes de la phosphatogenese. Ph.D. Thesis. Univ Paris VI, FranceGoogle Scholar
  2. Adatte T, Lu G (1995) Clay mineral correlation across the Paleocene-Eocene boundary: evidence of global turnover from western to eastern Tethys. In: Geological Society of America 1995, Annual Meeting, New Orleans, USA. Abstract p. 405Google Scholar
  3. Ahmed AH, Tlili A, Zalat A, Jeddoui Y (2014) Fossil diatoms from endogangue of the Ypresian phosphatic pellets of the Gafsa-Metlaoui basin: implication on the origin of biogenic silica and depositional environment. J Geosci Arab.  https://doi.org/10.1007/s12517-013-1253-2 Google Scholar
  4. Ali MBH, Kadri A, Zagrarni MF, Gaied M E (2002) Les unités lithostratigraphiques de l’Eocène en Tunisie: Evolution latérale et actualisation de la nomenclature-. Notes du Service Géologique de Tunisie, 69:53–73Google Scholar
  5. Assereto R, Folk RL (1980) Diagenetic fabrics of aragonite, calcite, and dolomite in an ancient peritidal-spelean environment: Triassic Calcare Rosso, Lombardia, Italy. J Sediment Res 50(2):371–394Google Scholar
  6. Bates NR, Brand U (1990) Secular variations of calcium carbonate mineralogy: an evaluation of ooid and rnicrite chemistries. Geol Rundsch 79:27–46CrossRefGoogle Scholar
  7. Bathurst RGC (1966) Boring algae, micrite envelopes and lithification of molluscan biosparites. Lpool Munchr Geol 5:89–109Google Scholar
  8. Bathurst RGC (1975) Carbonate sediments and their diagenesis. Developments in Sedimentology, vol 12. Elsevier, Amsterdam, p 658Google Scholar
  9. Beji-Sassi A, Ouazaa NL, Clocchiatti C (1996) Les inclusions vitreuses des ilménites, apatites et quartz des sédiments phosphatés de Tunisie: témoignages d’un volcanisme alcalin d’Age paléocène supérieur à Eocène. Bull. la Société Géologique Fr 167(2):227–234Google Scholar
  10. Beji-Sassi A, Laridhi-Ouzaa N, Zaier A, Clocchiatti R (2001) Paleocene early Eocene alkaline volcanic activity in Tunisia phosphatic sediments. Comparison with Cretaceous magmatic and geodynamic significance. Les Journées l’ETAP 2001(4):47–58Google Scholar
  11. Bernoulli D, Gunzenhauser B (2001) A dolomitized diatomite in an Oligocene ± Miocene deep-sea fan succession, Gonfolite Lombarda Group, Northern Italy Sediment. Geology 139:71–91Google Scholar
  12. Bjørlykke K, Aagaard P, Egeberg PK, Simmons SP (1995) Geochemical constraints from formation water analyses from the North Sea and the Gulf Coast Basins on quartz, feldspar and illite precipitation in reservoir rocks, vol 86. Geological Society, London, pp 33–50Google Scholar
  13. Bolle MP, Adatte T, Keller G, Von Salis K, Burns S (1999) The Paleocene-Eocene transition in the southern Tethys (Tunisia): climatic and environmental fluctuations. Bulletin de la Société Géologique de France 170(5):661–680Google Scholar
  14. Budd DA, Perkins RD (1980) Bathymetric zonation and paleoecological significance in Puerto Rican shelf and slope sediments. J Sediment Petrol 50:553–881Google Scholar
  15. Burns SJ, McKenzie JA, Vasconcelos C (2000) Dolomite formation and biogeochemical cycles in the Phanerozoic. Sedimentology 47:49–61CrossRefGoogle Scholar
  16. Burollet PF (1956) Contribution à l’etude stratigraphique de la Tunisie centrale. Ph.D Thesis Paris. Annales des Mines et de la Geologie, Tunis. 18:350Google Scholar
  17. Carson GA (1991) Silicification of fossils. In: Allison P, Briggse G (eds) Taphonomy: releasing the date locked in the fossil record. Plenum Press, New York, pp 455–499CrossRefGoogle Scholar
  18. Castany G (1951) Etude géologique de l’Atlas tunisien oriental. Ann. Min. et Géol., Tunisie, 8. Thèse Doct. Ès-Sc., ParisGoogle Scholar
  19. Cayeux L (1935) Les roches sédimentaires de France e Roches carbonatées. Masson and Cie, Paris, p 447Google Scholar
  20. Chaabani F (1995) Dynamique de la partie orientale du bassin de Gafsa au crétacé et au paléogène. Etude minéralogique et géochimique de la série phosphatée éocène-Tunisie Méridionale. Ph.D. Thesis. Manar II Univ, TunisiaGoogle Scholar
  21. Chaabani F, Ounis A (2008) Sequence stratigraphy and depositional environment of phosphorite deposits evolution: case of the Gafsa basin, Tunisia. In: Conference Abstract at the International. Geological. Cong. OsloGoogle Scholar
  22. Christopher SS (2009) Cenozoic stratigraphy of the Sahara, Northern Africa. J Afr Earth Sci 53(3):89–121CrossRefGoogle Scholar
  23. Clocchiatti R, Sassi S (1972) Découverte de témoins d’un volcanisme paléocène à éocène dans le bassin phosphaté de Métlaoui (Tunisie Méridionale). C.R. Acad Sci Paris 247:513–517Google Scholar
  24. Dapples EC (1979) Silica as an agent in diagenesis. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments and sedimentary rocks, developments in sedimentology, vol 25A. Elsevier, Amsterdam, pp 99–141CrossRefGoogle Scholar
  25. De Wever P, Azéma J, Fourcade E (1994) Radiolaires et radiolarites: production primaire, diagenèse et paléogéographie. Bull. Ctr. Rech. Expl.-Prod. Bull. Ctr. Rech. Expl.-Prod. Elf Aquitaine 18:315–379Google Scholar
  26. Deconinck J, Chamley H, Beaudoin B, Accarie H, Renard M (1985) Paleoenvironmental and diagnostic significance of Aptian to Eocene clay mineral successions of the Umbria e Marche basin (northern Apennines, Italy). In: Abstract International Conference. Association Internationale Pour l’Etude des Argiles, Strasbourg, 23–28 August 1985Google Scholar
  27. Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (ed) Classification of Carbonate Rocksda Symposium: Tulsa, OK, American Association of Petroleum Geologists Memoir 1, pp 108–121Google Scholar
  28. El-Saiy AK, Jordan BR (2007) Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates. J Asian Earth Sci 31(1):35–43CrossRefGoogle Scholar
  29. Fauconnier D, Slansky M (1980) Relations entre le développement des dinoflagelles et la sédimentaion phosphate deu basin de Gafsa (Tunisie). Bur Rech Geol MinGoogle Scholar
  30. Felhi M (2010) Les niveaux intercalaires de la série yprésienne du bassin Gafsa-Métlaoui: Apports de laminéralogie des argiles et de la géochimie de la matière organique résiduelle à la reconstitution paléoenvironnementale. Ph.D. Thesis, Sfax University, p 184Google Scholar
  31. Felhi M, Saidi R, Fattah N, Tlili A (2016) Textural evidences for dissolution of silica-rich rocks of the Ypresian phosphatic series, Gafsa-Metlaoui basin, southwestern Tunisia: implication of biogenic silica supply on genesis of fibrous clays. Arab J Geosci.  https://doi.org/10.1007/s12517-016-2735-9 Google Scholar
  32. Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin, p 976CrossRefGoogle Scholar
  33. Folk RL (1959) Practical petrographic classification of limestones. Am Assoc Petrol Geol 43(1):1–38Google Scholar
  34. Föllmi KB, Garrison RE, Grimm KA (1991) Stratification in phosphatic sediments: Illustrations from the Neogene of Central California. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and Events in Stratigraphy. Springer, Berlin, pp 492–507Google Scholar
  35. Föllmi KB, Badertscher C, De Kaenel E, Stille P, John C, Adatte T, Steinmann P (2005) Phosphogenesis and organic-carbon preservation in the Miocene Monterey Formation at Naples Beach, California—the Monterey hypothesis revisited. Geol Soc Am Bull 117:589–619CrossRefGoogle Scholar
  36. Fournie D (1978) Nomenclature litho stratigraphique des séries du crétacé supérieur au tertiaire de Tunisie. Bull Cent Rech Prod Elf Aquitaine 2(1):97–148Google Scholar
  37. Galfati I, Sassi AB, Zaier A, Bouchardon JL, Bilal E, Joron JL, Sassi S (2010) Geochemistry and mineralogy of Paleocene-Eocene Oum El Khecheb phosphorites (Gafsa-Metlaoui Basin) Tunisia. Geochem J 44:189–210CrossRefGoogle Scholar
  38. Garnit H, Bouhlel S, Barca D, Chtara C (2012) Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: insights from trace elements and REE into paleo-depositional environments. Chemie der Erde-Geochemistry 72(2):127–139CrossRefGoogle Scholar
  39. Gbadeyan R, Dix GR (2013) The role of regional and local structure in a Late Ordovician (Edenian) foreland platform-to-basin succession inboard of the Taconic Orogen, Central Canada. Geosciences 3(2):216–239CrossRefGoogle Scholar
  40. Henchiri M (2007) Sedimentation, depositional environment and diagenesis of Eocene biosiliceous deposits in Gafsa basin, southern Tunisia. J Afr Earth Sci 49:187–200CrossRefGoogle Scholar
  41. Henchiri M, Fattah N (2013) Extent of diagenetic transformations in severely altered biogenic silica deposits from Tunisia: new insights from mineralogy and geochemistry. Arab J Geosci.  https://doi.org/10.1007/s12517-012-0827-8 Google Scholar
  42. Henchiri M, Slim-S’himi N (2006) Silicification of sulfate evaporites and their carbonate replacements in Eocene marine sedimentary rocks, Tunisia: two diagenetic trends. Sedimentology 53:1135–1159CrossRefGoogle Scholar
  43. Hsü KJ, Siegenthaler C (1969) Preliminary experiments on hydrodynamic movements induced by evaporation and their bearing on the dolomite problem. Sedimentology 12:11–25CrossRefGoogle Scholar
  44. Humphrey JD (1988) Late Pleistocene mixing zone dolomitization, southeastern Barbados, West Indies. Sedimentology 35(2):327–348CrossRefGoogle Scholar
  45. Jacka A (1974) Replacement of fossil by length slow chalcedony and associated dolomitization. J Sediment Petrol 41:1045–1058Google Scholar
  46. Jamoussi F, Bedir M, Boukadi N, Kharbachi S, Zargouni F, Lopez-Galindo A, Paquet H (2003) Clay mineralogical distribution and tectono-eustatic control in the Tunisian margin basins. Comptes rendus Geosciences 335:175–183CrossRefGoogle Scholar
  47. Jarvis I (1980) Geochemistry of phosphatic chalks and hardgrounds from the Santonian to early Campanian (Cretaceous) of northern France. J Geol Soc London 137:705–721CrossRefGoogle Scholar
  48. Karoui-Yaakoub N (2006) Effet du réchauffement climatique global sur le comportement des foraminifères benthiques de l’intervalle de passage Paléocène—Eocène de la coupe d’Elles (Tunisie). Rev Paléobiologie Genève 25(2):575–591Google Scholar
  49. Karoui-Yaakoub N, M’barek-Jemaï BM, Cherni R (2001) Le passage Paléocène/Eocène au nord de la Tunisie (Jebel Kharouba): foraminifères planctoniques, minéralogie et environnement de dépôt. Rev Paléobiologie Genève 30(1):105–121Google Scholar
  50. Kobluk DR, Risk MJ (1977) Calcification of exposed filaments of endolittic algae, micrite envelope formation and sediment production. J Sediment Petrol 47(5):17–528Google Scholar
  51. Kocsis L, Ounis A, Chaabani F, Salah NM (2013) Paleoenvironmental conditions and strontium isotope stratigraphy in the Paleogene Gafsa Basin (Tunisia) deduced from geochemical analyses of phosphatic fossils. Int J Earth Sci 102:1111–1129CrossRefGoogle Scholar
  52. Kocsis L, Ounis A, Baumgartner C, Pirkenseer C, Harding I, Adatte A, Chaabani F, Salah MN (2014) Paleocene-Eocene palaeoenvironmental conditions of the main phosphorite deposits (Chouabine Formation) in the Gafsa Basin, Tunisia. J Afr Earth Sci 100(2014):586–597CrossRefGoogle Scholar
  53. Land LS, Moore CH (1980) Lithification, micritization and syndepositional diagenesis of biolithites on the Jamaican island slope. J Sediment Res 50(2):357–369Google Scholar
  54. Longman NW (1980) Carbonate diagenetic textures from near-surface diagenetic environements. Am Assoc Petrol Geol 64:461–487Google Scholar
  55. Loope DB, Watkins DK (1989) Pennsylvanian fossils replaced by red chert: early oxidation of pyritic precursors. J Sediment Petrol 59:375–386Google Scholar
  56. Madden RHC, Wilson MEJ (2013) Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits. Sed Geol 286–287:20–38CrossRefGoogle Scholar
  57. Mardassi-Hafsia B (2004) Les facies micritiques producteurs d’hydrocarbures dans l’éocène inferieur de Tunisie Centro-septentrionale et leur transition vers les facies de plateforme. Sédimentation, Diagenèse et Aspect réservoir. Ph.D. Thesis. Manar II Univ., TunisiaGoogle Scholar
  58. Melas P (1982) Etude sédimentologique, paléogéographique et géochimique du Lias Carbonate du Nord- Lodévois. Application à la reconnaissance et à l’interprétation d’amas métallifères. Ph.D. Thesis. Montpellier 2 Univ, FranceGoogle Scholar
  59. Messadi AM (2014) Caractères sédimentaires et stratigraphie évènementielle des dépôts de l’intervalle Paléocène-Eocène dans la région de Tamerza. Master, Manar II Univ., TunisiaGoogle Scholar
  60. Messadi AM, Mardassi B, Ouali JA, Touir J (2016) Sedimentology, diagenesis, clay mineralogy and sequential analysis model of Upper Paleocene evaporite-carbonate ramp succession from Tamerza area (Gafsa Basin: Southern Tunisia). J Afr Earth Sci 118:205–230CrossRefGoogle Scholar
  61. Moody RTG, Sandman RI, Finch EM (1992) The Ypresian Lutetian boudary onshore Tunisia, and its offshore analogue. E.T.A.P.; Actes des IIIème Journées de géologie tunisienne appliquée à la recherche des hydrocarbures, pp. 181–191Google Scholar
  62. Moore CH (1989) Carbonate diagenesis and porosity, vol 46. Elsevier, AmsterdamCrossRefGoogle Scholar
  63. M’Rabet A (1981) Stratigraphie, sédimentation et diagenèse carbonatée des séries du Crétacé inferieur de Tunisie Centrale. Ph.D. Thesis. Paris-Sud centre d’Orsay Univ., FranceGoogle Scholar
  64. Ounis A, Kocsis L, Chaabani F, Pfeifer H (2008) Rare earth element and stable isotope geochemistry (d13C and d18O) of phosphorite deposits in the Gafsa Basin, Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 268(1–2):1–18.  https://doi.org/10.1016/j.palaeo.2008.07.005 CrossRefGoogle Scholar
  65. Perry CT (1998) Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates. Sedimentology 45:39–51CrossRefGoogle Scholar
  66. Perry CT (1999) Biofilm-related calcification, sediment trapping and constructive micrite envelopes: a criterion of ancient grass-bed environments? Sedimentology 46:33–46CrossRefGoogle Scholar
  67. Perry CT, Bertling M (2000) Spatial and temporal patterns of macroboring within Mesozoic and Cenozoic coral reef systems. In: Insalaco E, Skelton E, Palmer TJ (eds) Carbonate platform systems: components and interactions, vol 178. Geological Society of London, London, pp 33–50Google Scholar
  68. Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth Sci Rev 86:106–144CrossRefGoogle Scholar
  69. Perry CT, Macdonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 186:101–113CrossRefGoogle Scholar
  70. Purser BH (1978) Early diagenesis and the preservation of porosity in Jurassic limestones. J Pet Geol 1:83–94CrossRefGoogle Scholar
  71. Purser BH (1980) Sédimentation et diagenèse des carbonates néritiques récents. I. Ed. Technip, p 366Google Scholar
  72. Reid RP, Macintyre IG (2000) Microboring versus recrystallization: further insight into the micritization process. J Sediment Res 70:24–28CrossRefGoogle Scholar
  73. Robert C, Chamley H (1991) Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments. Glob Planet Change 89:315–332CrossRefGoogle Scholar
  74. Sassi S (1974) La sédimentation phosphatée au Paléocène dans le Sud et le Centre Ouest de la Tunisie. Ph.D. Thesis. Paris Univ, FranceGoogle Scholar
  75. Schieber J (1996) Early diagenetic silica deposition in algal cysts and spores; a source of sand in black shales? J Sediment Res 66:175–183Google Scholar
  76. Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Petrol 57:967–975Google Scholar
  77. Slansky M (1980) Géologie des phosphates sédimentaires. Mémoire du Bureau de recherches géologiques Minières; n°92 pp114Google Scholar
  78. Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damste JS, Dickens GR, Huber M, Reichart GJ, Stein R, Matthiessen J, Lourens LJ, Pedentchouk N, Backman J, Moran K, The Expedition 302 Scientists (2006) Subtropical arctic ocean temperatures during the paleocene/eocene thermal maximum. Nat. Camb. 441(1):610–613CrossRefGoogle Scholar
  79. Soudry D, Glenn CR, Nathan Y, Segal I, VonderHaar D (2006) Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth Sci Rev 78:27–57CrossRefGoogle Scholar
  80. Swett K, Crowder K (1982) Primary phosphatic oolites from the Lower Cambrian of Spitsbergen. J Sediment Petrol 52:587–593Google Scholar
  81. Swinchatt JP (1965) Significance of constituent composition, texture, and skeletal breakdown in some recent carbonate sediments. J Sediment Petrol 35:71–90Google Scholar
  82. Tlili A, Felhi M, Montacer M (2010) Origin and depositional environment of palygorskite and sepiolite from the Ypresian phosphatic series, Southwestern Tunisia. Clay Clay Min 58:573–658CrossRefGoogle Scholar
  83. Tlili A, Felhi M, Montacer M (2011) Mineralogical and geochemical studies of Ypresian marly clays and silica rocks of phosphatic series, Gafsa-Metlaoui basin, southwestern Tunisia implication for depositional environment. Geosciences J 15(1):53–64CrossRefGoogle Scholar
  84. Tucker ME, Bathurst RGC (1990) Carbonate diagenesis. Wiley, Hoboken p, p 312CrossRefGoogle Scholar
  85. Tucker ME, Wright PV, Dicckson JAD (1990) Carbonate Sedimentology. Wiley, Hoboken, p 482CrossRefGoogle Scholar
  86. Warren JK (2006) EvaporitesdSediments, resources, and hydrocarbons. Springer, New York, p 1035CrossRefGoogle Scholar
  87. Williams LA, Crerar DA (1985) Silica diagenesis, II. General mechanisms. J Sediment Petrol 55:312–321Google Scholar
  88. Wilson JL (1975) Carbonate facies in geologic history. Springer Verlag, New YorkCrossRefGoogle Scholar
  89. Zachos J, Stott L, Lohmann K (1994) Evolution of early Cenozoic marine temperatures. Paleoceanography 9(2):353–387CrossRefGoogle Scholar
  90. Zaier A, Beji-Sassi A, Sassi S, Moody RTJ (1998) Basin evolution and deposition during the Early Paleogene in Tunisia. In: Maggregor DS, Moody RTJ, Clark- Lowes DD (eds) Petroleum geology of North Africa. Geological Society, London, pp 375–393 Special Publication, 123 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Abdel Majid Messadi
    • 1
  • Besma Mardassi
    • 2
  • Jamel Abdennaceur Ouali
    • 3
  • Jamel Touir
    • 1
  1. 1.Faculty of Sciences of SfaxLaboratory Water Energy and Environment (L3E ENIS)SfaxTunisia
  2. 2.Higher Institute of Biotechnology of SfaxLaboratory Water Energy and Environment (L3E ENIS)SfaxTunisia
  3. 3.National School of Engineers of SfaxLaboratory Water Energy and Environment (L3E ENIS)SfaxTunisia

Personalised recommendations