Skip to main content

Advertisement

Log in

Earthquake induced soft sediment deformation structures in the Paleoproterozoic Vempalle Formation (Cuddapah basin, India)

  • Review
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Soft sediment deformation structures (SSDS) are preserved in a homogenous dolomudstone lithology of crinkly laminated and heterolithic facies of the Paleoproterozoic Vempalle Formation in the Cuddapah Basin. This basin was formed on the eroded basement rocks of the Eastern Dharwar Craton, India. Deformation structures preserved in this succession include combination of breccia and folds, intrastratal faults, cracks, and dikes belonging mostly to a brittle deformation regime associated with ductile imprints. Based on the observed SSDS, their lateral homogeneity and traceability, draping by undeformed strata, proximity of faults as well as apparent lack of storm signatures and gravity induced mass movement, these fine-grained deformed beds can be tentatively ascribed to a large to intermediate depth earthquake with Richter magnitude scale 4 and above, generated during reactivation of basement faults owing to plume related mantle activity. The occurrence of SSDS in the Vempalle Formation emphasizes the role of downwarping along pre-existing planes of weakness in the Archean basement in the evolution of the Cuddapah Basin, analogous to subsidence in present-day continental margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Absar N, Nizamudheen BM, Augustine S, Managave S, Balakrishnan S (2016) C, O, Sr and Nd isotope systematic of carbonates of Papaghni subbasin, Andhra Pradesh, India: implications for genesis of carbonate-hosted stratiform uranium mineralization and geodynamic evolution of the Cuddapah basin. Lithos 263:88–100

    Article  Google Scholar 

  • Alfaro P, Moretti M, Soria JM (1997) Soft sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix Baza Basin, Central Betic Cordillera). Eclogae Geol Helv 90:531–540

    Google Scholar 

  • Allen JRL (1982) Sedimentary structures, their character and physical basis, vol 2. Developments in sedimentology 30B. Elsevier, Amsterdam, p 663

    Google Scholar 

  • Anand A, Jain AK (1987) Earthquakes and deformational structures (seismites) in Holocene sediments from the Himalayan–Andaman Arc, India. Tectonophysics 133:105–111

    Article  Google Scholar 

  • Anand M, Gibson SA, Subba Rao KV, Kelley SP, Dickin AP (2003) Early Proterozoic melt generation processes beneath the intra-cratonic Cuddapah basin, southern India. J Petrol 44:2139–2171

    Article  Google Scholar 

  • Basilone L, Sulli A, Gasparo Morticelli M (2016) The relationships between soft-sediment deformation structures and synsedimentary extensional tectonics in Upper Triassic deep-water carbonate succession (Southern Tethyan rifted continental margin—Central Sicily). Sed Geol 344:310–322

    Article  Google Scholar 

  • Berra F, Felletti F (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sed Geol 235:249–263

    Article  Google Scholar 

  • Biswal TK, De Waele B, Ahuka H (2007) Timing and dynamics of the juxtaposition of the Eastern Ghats Mobile Belt against the Bhandara Craton, India: a structural and zircon U–Pb SHRIMP study of the fold–thrust belt and associated syenite plutons. Tectonics 26:21. https://doi.org/10.1029/2006TC002005

    Article  Google Scholar 

  • Blanc EJ-P, Blanc-Alétru M-C, Mojon P-O (1998) Soft-sediment deformation structures interpreted as seismites in the uppermost Aptian to lowermost Albian transgressive deposits of the Chihuahua basin (Mexico). Geol Rundsch 86:875–883

    Article  Google Scholar 

  • Brothers RJ, Kemp AES, Maltman AJ (1996) Mechanical development of vein structures due to the passage of earthquake waves through poorly consolidated sediments. Tectonophysics 260:227–244

    Article  Google Scholar 

  • Chakrabarti G, Shome D (2007) Reworked diamictites accumulation as debris flow in aqueous medium—an example from late Paleoproterozoic basal Gulcheru Formation, Cuddapah Basin, India. Himal Geol 28:87–98

    Google Scholar 

  • Chakrabarti G, Shome D (2010) Interaction of microbial communities with clastic sedimentation during Paleoproterozoic time—an example from basal Gulcheru Formation, Cuddapah basin, India. Sed Geol 226:22–28

    Article  Google Scholar 

  • Chakrabarti G, Shome D (2011) Carbonate facies and depositional environment of the Paleoproterozoic Vempalle Formation, Cuddapah basin, India. Indian J Geol 81:27–37

    Google Scholar 

  • Chakrabarti C, Basu Mallick S, Pyne TK, Guha D (2006) A manual of the geology of India, vol. 1, Precambrian, part I: Southern part of the Peninsula. Geological Survey of India, Special Publication 77: p 572

  • Chakrabarti G, Shome D, Bauluz B, Sinha S (2009) Provenance and weathering history of Mesoproterozoic clastic sedimentary rocks from the basal Gulcheru Formation, Cuddapah basin, India. J Geol Soc India 74:119–130

    Article  Google Scholar 

  • Chakrabarti G, Shome D, Kumar S, Stephens GM III, Kah LC (2014) Carbonate platform development in a Paleoproterozoic extensional basin, Vempalle Formation, cuddapah basin, India. J Asian Earth Sci 91:263–279

    Article  Google Scholar 

  • Chakrabarti G, Eriksson PG, Shome D (2015) Sedimentation in the Papaghni Group of rocks in the Papaghni sub-basin of the Proterozoic Cuddapah Basin, India. In:Mazumder R, Eriksson PG, (eds) Precambrian basins of India: stratigraphic and tectonic context. Geological Society, London, Memoirs 43: pp 255–256. http://dx.doi.org/10.1144/M43.17

  • Chakraborty BK (2000) Precambrian geology of India— a synoptic view. Geol Surv India Spec Publ 55:1–12

    Google Scholar 

  • Chakraborty PP, Dey S, Mohanty SP (2010) Proterozoic platform sequences of Peninsular India: implications towards basin evolution and supercontinent assembly. J Asian Earth Sci 39:589–607

    Article  Google Scholar 

  • Chatterjee N, Bhattacharji S (2001) Petrology, geochemistry and tectonic settings of the mafic dikes and sills associated with the evolution of the Proterozoic Cuddapah basin of South India. Proc Indian Acad Sci 110:433–453

    Google Scholar 

  • Choudhuri AK, Deb GK, Deb SP, Mukherjee MK, Ghosh G (2002) The Purana basins of Southern Cratonic Province of India—a case for Mesoproterozoic fossil rifts. Gondwana Res 5:23–33

    Article  Google Scholar 

  • Daley B (1971) Diapiric and other deformational structures in an Oligocene argillaceous limestone. Sed Geol 6:29–51

    Article  Google Scholar 

  • Dhana Raju R, Roy M, Vasudeva SG (1993) Uranium mineralization in South Western part of Cuddapah basin: a petrominerological and geochemical study. J Geol Soc India 42:135–149

    Google Scholar 

  • El Taki H, Pratt BR (2012) Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites: seismites in Red River strata (Upper Ordovician) of southern Saskatchewan, Canada. Bull Can Pet Geol 60:37–58

    Article  Google Scholar 

  • Ettensohn FR, Rast N, Brett CE (eds) (2002) Ancient Seismites. Geological Society of America, Boulder, p 200

    Google Scholar 

  • Ezquerro L, Moretti M, Liesa CL, Luzón A, Pueyo EL, Simón JL (2016) Controls on space–time distribution of soft-sediment deformation structures: applying palaeomagnetic dating to approach the apparent recurrence period of paleoseisms at the Concud Fault (eastern Spain). Sed Geol 344:91–111

    Article  Google Scholar 

  • French JE, Heaman LM, Chacko T, Srivastava RK (2008) 1891–1883 Ma Southern Bastar-Cuddapah Mafic Igneous Events, India: a newly recognized Large Igneous Province. Precambr Res 160:308–322

    Article  Google Scholar 

  • Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324:169–187

    Article  Google Scholar 

  • Hempton MR, Dewey JF (1983) Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian fault, southeast Turkey. Tectonophysics 98:7–14

    Article  Google Scholar 

  • Hoffman PF (1967) Algal Stromatolites: use in stratigraphic correlation and Palaeocurrent determination. Science 157:1043–1045

    Article  Google Scholar 

  • Holland TH (1909) Indian Empire. Geology: Imperial Gazetteer of India. 1:50–103

  • Hurst A, Scott A, Vigorito M (2011) Physical characteristics of sand injectites. Earth-Sci Rev 106:215–246

    Article  Google Scholar 

  • Jayaprakash AV (2007) Purana basins of Karntaka. Memoirs of the Geological Survey of India 129:p 140

  • Kahle CF (2002) Seismogenic deformation structures in microbialites and mudstones, Silurian Lockport Dolomite, northwestern Ohio, USA. J Sediment Res 72:201–216

    Article  Google Scholar 

  • Kale VS, Phansalkar VG (1991) Purana basins of Peninsular India: a review. Basin Res 3:1–36

    Article  Google Scholar 

  • Kundu A, Goswami B, Eriksson PG (2011) Palaeoseismicity in relation to basin tectonics as revealed from soft-sediment deformation structures of the Lower Triassic Panchet formation, Raniganj basin (Damodar valley), eastern India. J Earth Syst Sci 120(1):167–181

    Article  Google Scholar 

  • Logan BW, Rezak R, Ginsburg RN (1964) Classification and environmental significance of algal stromatolites. J Geol 72:68–83

    Article  Google Scholar 

  • Liesa CL, Rodríguez-López JP, Ezquerro L, Alfaro P, Rodríguez-Pascua MA, Lafuente P, Arlegui L, Simón JL (2016) Facies control on seismites in an alluvial–aeolian system: the Pliocene dunefield of the Teruel half-graben basin (eastern Spain). Sed Geol 344:237–252

    Article  Google Scholar 

  • Marco S, Agnon A (2005) High-resolution stratigraphy reveals repeated earthquake faulting in the Masada Fault Zone, Dead Sea Transform. Tectonophysics 408:101–112

    Article  Google Scholar 

  • Martín-Chivelet J, Palma RM, López-Gómez J, Kietzmann DA (2011) Earthquake-induced soft-sediment deformation structures in Upper Jurassic open-marine microbialites (Neuquén Basin, Argentina). Sed Geol 235:210–221

    Article  Google Scholar 

  • Meert JG, Pandit MK (2015) The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India. In: Mazumder R, Eriksson PG (eds) Precambrian Basins of India: Stratigraphic and Tectonic Context. Geological Society, London, Memoires 43:29–54

  • Meijerink AMJ, Rao DP, Rupke J (1984) Stratigraphic and structural development of the Precambrian Cuddapah Basin, S.E. India. Precambrian Research 26:57–104

    Article  Google Scholar 

  • Mishra DC (2011) Long hiatus in Proterozoic sedimentation in India: Vindyan, Cuddapah and Pakhal Basins—a plate tectonic model. J Geol Soc India 77:17–25

    Article  Google Scholar 

  • Mishra DC, Babu Rao V, Laxman G, Rao MBSV, Venkatrayudu M (1987) Three-dimensional structural model of Cuddapah basin and adjacent eastern part from geophysical studies. Geolo Soc India Mem 6:313–329

    Google Scholar 

  • Mohanty S (2011) Palaeoproterozoic assembly of the Napier Complex, southern India and Western Australia: implications for the evolution of the Cuddapah basin. Gondwana Res 20:344–361

    Article  Google Scholar 

  • Mohindra R, Bagati TN (1996) Seismically induced soft-sediment deformation structures (seismites) around Sumdo in the lower Spiti valley (Tethys Himalaya). Sed Geol 101:69–83

    Article  Google Scholar 

  • Montenat C, Barrier P, Ott d’Estevou P, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sed Geol 196:5–30

    Article  Google Scholar 

  • Moretti M, Tropeano M (1996) Strutture sedimentarie deformative (sismiti) nei depositi tirreniani di Bari. Memorie della Società Geologica Italiana 51:485–500

    Google Scholar 

  • Moretti M, Alfaro P, Caselles O, Canas JA (1999) Modelling seismites with a digital shaking table. Tectonophysics 304:369–383

    Article  Google Scholar 

  • Murthy YGK, Babu Rao V, Guptasarma D, Rao JM, Rao MN, Bhattacharji S (1987) Tectonic, petrochemical and geophysical studies of mafic dyke swarms around the Proterozoic Cuddapah Basin, South India. In: Halls HC, Fahrig WF (eds) Mafic Dyke Swarms, vol 34. Geological Association of Canada, Special Paper, pp 303–317

  • Nagaraja Rao BK, Rajurkar ST, Ramalingaswami G, Ravindra B (1987) Stratigraphy structure and evolution of Cuddapah Basin. In: Radhakrishna BP (eds) Purana basins of peninsular india: middle to late proterozoic, vol 6. Geological Society of India, Memoir, pp 33–86

  • Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondowana Res 25:4–29

    Article  Google Scholar 

  • Naqvi SM (2005) Geology and the evolution of the Indian plate. Capital, New Delhi, p 450

    Google Scholar 

  • Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis—An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes. Eng Geol 44:1–76

    Article  Google Scholar 

  • Ohsumi T, Ogawa Y (2008) Vein structures, like ripple marks, are formed by short-wavelength shear waves. J Struct Geol 30:719–724

    Article  Google Scholar 

  • Ortner H (2007) Styles of soft-sediment deformation on top of a growing fold system in the Gosau Group at Muttekopf, Northern Calcareous Alps, Austria: slumping versus tectonic deformation. Sed Geol 196:99–118

    Article  Google Scholar 

  • Owen HG (1987) Deformation processes in unconsolidated sands. In: Jones ME, Preston RMF (eds) Deformat on of sediments and sedimentary rocks. Geological Society of London Special Publication, pp 11–24

  • Owen G (1996) Anatomy of a water-escape cusp in Upper Proterozoic Torridon Group sandstones, Scotland. Sed Geol 103:117–128

    Article  Google Scholar 

  • Patil Pillai S, Kale VS (2011) Seismites in the Lokapur subgroup of the Proterozoic Kaladgi basin, South India: a testimony to syn-sedimentary tectonism. Sed Geol 240:1–13

    Article  Google Scholar 

  • Patranabis-Deb S, Saha D, Tripathy V (2012) Basin stratigraphy, sea-level fluctuations and their global tectonic connections—evidence from the Proterozoic Cuddapah Basin. Geol J 47:263–283

    Article  Google Scholar 

  • Plaziat J-C, Purser BH, Philobbos E (1990) Seismic deformation structures (seismites) in the syn-rift sediments of the NW Red Sea (Egypt). Socie´te´ Ge´ologique de France Bull 8:419–434

    Article  Google Scholar 

  • Plummer PS, Gostin VA (1981) Shrinkage cracks: desiccation or synaeresis. J Sediment Petrol 51:1147–1156

    Google Scholar 

  • Pratt BR (1994) Seismites in Mesoproterozoic Altyn Formation (Belt Supergroup), Montana: a test for tectonic control of peritidal carbonate cyclicity. Geology 22:1091–1094

    Article  Google Scholar 

  • Pratt BR (1998) Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sed Geol 117:1–10

    Article  Google Scholar 

  • Pratt BR (2001) Oceanography, bathymetry and syndepositional tectonics of a Precambrian intracratonic basin: integrating sediments, storms, earthquakes and tsunamis in the Belt Supergroup (Helena Formation, c. 1.45 Ga), western North America. Sed Geol 141–142:371–394

    Article  Google Scholar 

  • Pratt BR (2002a) Tepees in peritidal carbonates: origin via earthquake-induced deformation, with example from the Middle Cambrian of Western Canada. Sed Geol 153:57–64

    Article  Google Scholar 

  • Pratt BR (2002b) Storms versus tsunamis: dynamic interplay of sedimentary, diagenetic, and tectonic processes in the Cambrian of Montana. Geology 30:423–426

    Article  Google Scholar 

  • Pratt BR, Haidl FM (2008) Microbial patch reefs in Upper Ordovician Red River strata, Williston Basin, Saskatchewan: signal of heating in a deteriorating epeiric sea. In: Pratt BR, Holmden C (eds) Dynamics of epeiric seas. Geological Association of Canada, Special Paper, pp 315−352

  • Pruss SB, Bosak T, Macdonald F, McLane M, Hoffman P (2010) Microbial facies in an early Cryogenian (Sturtian) cap carbonate, the Rasthof Formation. Otavi Group, northern Namibia: Precambrian Research 181:187–198

    Google Scholar 

  • Radhakrishna BP (1987) Introduction. In: Radhakrishna BP (ed) Purana basins of Peninsular India (Middle to Late Proterozoic). Geological Society of India, Memoir 6: i-xv

  • Rai AK, Pandey UK, Zakaulla S, Parihar PS (2015) New 1.9-2.0 Ga, Pb-Pb (PbSL), Age of Dolomites from Vempalle Formation, Lower CuddapahSupergroup, Eastern DharwarCraton, India. J Geol Soc India 86:131–136

    Article  Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2008) Geology of India, vols. 1 and 2. Geological Society of India. Text Book Series p 994

  • Rodríguez-Pascua MA, Calvo JP, De Vicente G, Gómez-Gras D (2000) Soft-sediment deformation structure interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sed Geol 135:117–135

    Article  Google Scholar 

  • Rossetti DF (1999) Soft-sediment deformation structures in late Albian to Cenomanian deposits, São Luís Basin, northern Brazil: evidence for paleoseismicity. Sedimentology 46:1065–1081

    Article  Google Scholar 

  • Roy M, Dhana Raju R, Vasudeva Rao M, Vasudeva SG (1990) Stromatolitic uraniferous dolostone of the Vempalle Formation, Cuddapah supergroup, Andhra Pradesh, India: nature and bearing of stromatolites on U-mineralization. Explor Res Atomic Miner 3:103–113

    Google Scholar 

  • Saha D, Chakraborty S (2003) Deformation pattern in the Kurnool and Nallamalai groups in the northeastern part (Palnad area) of the Cuddapah Basin, south India and its implication on Rodinia/Gondwana tectonics. Gondwana Res 6:573–583

    Article  Google Scholar 

  • Saha D, Tripathy V (2012) Paleoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: a review. In: Majumder R, Saha D (eds) Paleoproterozoic of India, vol 364. Geological Society of London, Special Publication, pp 161–184

  • Sarkar S, Choudhury A, Banerjee S, van Loon AJ, Bose PK (2014) Seismic and non-seismic soft-sediment deformation structures in the Proterozoic Bhander Limestone, central India. Geologos 20:89–103

    Article  Google Scholar 

  • Schieber J (1999) Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios 14:3–12

    Article  Google Scholar 

  • Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (2007) Atlas of microbial mat features preserved within the siliciclastic rock record: atlases in geoscience 2. Elsevier, Amsterdam, p 311

    Google Scholar 

  • Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13:155–159

    Article  Google Scholar 

  • Seilacher A (1984) Sedimentary structures tentatively attributed to seismic events. Mar Geol 55:1–12

    Article  Google Scholar 

  • Shinn EA (1983) Tidal flat environment. In Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments, vol 33. Tulsa, American Association of Petroleum Geologists Memoir, pp 173–210

  • Sims JD (1973) Earthquake-induced structures in sediments of Van Norman Lake, San Fernando, California. Science 182:161–163

    Article  Google Scholar 

  • Sims JD (1975) Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29:141–152

    Article  Google Scholar 

  • Singh IB (1980) Precambrian sedimentary sequences of India: their peculiarities and comparison with modern sediments. Precambr Res 12:411–436

    Article  Google Scholar 

  • Singh S, Jain AK (2007) Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya: geological evidences of paleoseismicity along active fault zone. Sed Geol 196:47–57

    Article  Google Scholar 

  • Singh AP, Mishra DC (2002) Tectonosedimentary evolution of Cuddapah basin and Eastern Ghats mobile belt (India) as Proterozoic collision: gravity, seismic and geodynamic constraints. J Geodyn 33:249–267

    Article  Google Scholar 

  • Spalluto L, Moretti M, Festa V, Tropeano M (2007) Seismically-induced slumps in lower Maastrichtian peritidal carbonates of the Apulian Platform (southern Italy). Sed Geol 196:81–98

    Article  Google Scholar 

  • Su D, Sun A (2012) Typical earthquake-induced soft-sediment deformation structures in the Mesoproterozoic Wumishan Formation, Yongding River Valley, Beijing, China and interpreted earthquake frequency. J Palaeogeogr 1:71–89

    Google Scholar 

  • Sumner DY (1997) Late Archean calcite-microbe interactions: two morphologically distinct microbial communities that affected calcite nucleation differently. Palaios 12:302–318

    Article  Google Scholar 

  • Törő B, Pratt BR (2015) Characteristics and implications of sedimentary deformation features in the Green River Formation (Eocene) in Utah and Colorado. In: Vanden Berg MD, Ressetar R, Birgenheier LP (eds) Geology of Utah’s Uinta Basin and Uinta Mountains: Utah Geological Association Publication 44:371–422

  • Törő B, Pratt BR (2016) Sedimentary record of seismic events in the Eocene Green River Formation and its implications for regional tectonics on lake evolution (Bridger Basin, Wyoming). Sed Geol 344:175–204

    Article  Google Scholar 

  • Törő B, Pratt BR, Renaut RW (2015) Tectonically induced changes in lake evolution recorded by seismites in the Eocene Green River Formation, Wyoming. Terra Nova 27:218–222

    Article  Google Scholar 

  • Trifunac MD (2011) Earthquake engineering, non-linear problems. In: Meyers RA (ed) Extreme environmental events. Springer, New York, pp 201–217

    Chapter  Google Scholar 

  • Tripathy V, Saha D (2013) Plate margin paleostress variations and intracontinental deformations in the evolution of the Cuddapah basin through the Proterozoic. Precambrain Research 235:107–130

    Article  Google Scholar 

  • Van Loon AJ (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15:3–55

    Google Scholar 

  • Van Loon AJ (2014) The life cycle of seismite research. Geologos 20:61–66

    Article  Google Scholar 

  • Verma AK, Pati P, Sharma V (2017) Soft sediment deformation associated with the East Patna Fault south of the Ganga River, northern India: Influence of the Himalayan tectonics on the southern Ganga plain. J Asian Earth Sci 143:109–121

    Article  Google Scholar 

  • Weaver CE (1989) Clays, muds and shales. Developments in Sedimentology 44. Elsevier, Amsterdam, p 819

    Google Scholar 

  • Wheeler RL (2002) Distinguishing seismic from non-seismic soft sediment structures: criteria from seismic-hazard analysis. In: Ettensohn FR, Rast N, Brett CE (eds) Ancient Seismites, Geological Society of America Special Paper 359:1–11

  • Weidlich O, Bernecker M (2004) Quantification of depositional changes and paleoseismic activities from laminated sediments using outcrop data. Sed Geol 166:11–20

    Article  Google Scholar 

  • Zachariah JK, Bhaskar Rao YJ, Srinivasan R, Gopalon K (1999) Pb, Sr, Nd isotope systematics of Uranium mineralized stromatolitic dolomites from the Proterozoic CuddapahSupergroup, south India: constraints on age and provenance. Chem Geol 162:49–64

    Article  Google Scholar 

Download references

Acknowledgements

Financial assistance provided by UGC is gratefully acknowledged by the first author. The manuscript is greatly improved by input from Dr. Brian R Pratt, Department of Geological Sciences, University of Saskatchewan, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumita Panja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panja, M., Chakrabarti, G. & Shome, D. Earthquake induced soft sediment deformation structures in the Paleoproterozoic Vempalle Formation (Cuddapah basin, India). Carbonates Evaporites 34, 491–505 (2019). https://doi.org/10.1007/s13146-017-0412-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0412-z

Keywords

Navigation