Skip to main content
Log in

Very high magnesium calcite formation and microbial communities found in porosity of the Seroe Domi Formation of Curacao, Netherland Antilles

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Pores in the Seroe Domi Formation on Curacao contain large quantities of clay minerals, organic material, and protodolomite or very high-magnesium calcite (VHMC) crystals. Transmission electron microscopy (TEM) applied to bio-sectioned rock samples showed the in situ relationship between the organic material, clay minerals, and VHMC. Dumbbells, consisting of two globular bodies connected by a narrow waist, ~20 mm in length and 5–8 mm wide, characterize the organic masses. The dumbbells are coated by clay minerals. VHMC crystals grew from nucleation points within microbial films and sheaths that surround the dumbbells. DNA extraction for 16 s rRNA gene analysis revealed the presence of sulfate- and sulfur-reducing bacteria, a variety of marine cyanophytes, bacteridetes, and proteobacteria, plus freshwater cyanophytes within the rock samples. This study provides evidence from a new field locality for the microbial nucleation and growth of VHMC associated with clay minerals, and the in situ appearance of microbial dumbbells associated with dolomite. Additionally, this study is the first to reveal the internal structure of these dumbbell features indicating that they are organic in origin with crystalline material in the surrounding sheath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aloisi G, Gloter A, Kruger M, Wallmann K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34:1017–1020. doi:10.1130/G22986A.1

    Article  Google Scholar 

  • Beets DJ (1972) Lithology and stratigraphy of the cretaceous and danian succession of Curacao (Ph.D. thesis): University of Amsterdam, The Netherlands, 153 p

  • Berner RA (1968) Calcium carbonate concretions formed by the decomposition of organic matter. Science 159(3811):195–197

    Article  Google Scholar 

  • Bontognali TRR, Vasconcelos C, Warthmann RJ, Dupraz C, Bernasconi SM, McKenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology 36:663–666. doi:10.1130/G24755A.1

    Article  Google Scholar 

  • Bontognali TR, McKenzie JA, Warthmann RJ, Vasconcelos C (2014) Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria. Terra Nova 26(1):72–77

    Article  Google Scholar 

  • Bosak T, Newman DK (2003) Microbial nucleation of calcium carbonate in the Precambrian. Geology 31:557–580. doi:10.1130/0091-7613(2003)031<0577:MNOCCI>2.0.CO;2

    Article  Google Scholar 

  • Bottrell SH, Smart PL, Whitaker F, Raiswell R (1991) Geochemistry and isotope systematics of sulphur in the mixing zone of Bahamian blue holes. Appl Geochem 6(1):97–103

    Article  Google Scholar 

  • Bottrell SH, Carew JL, Mylroie JE (1993) Bacterial sulphate reduction in flank margin environments: evidence from sulphur isotopes. In: Proceedings of the 6th symposium on the geology of the Bahamas, Port Charlotte, Florida, Bahamian Field Station, pp 17–21

  • Bozzola JJ, Russell LD (1998) Electron Microscopy. Principles and techniques for biologists. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4):401–411

    Article  Google Scholar 

  • Buczynski C, Chafetz HS (1991) Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. J Sediment Petrol 61:226–233

    Article  Google Scholar 

  • Casanova J, Bodenan F, Negrel P, Azaroual M (1999) Microbial control on the precipitation of modern ferrihydrite and carbonate deposits from the Cezallier hydrothermal springs (Massif Central, France). Sed Geol 126:125–145. doi:10.1016/S0037-0738(99)00036-6

    Article  Google Scholar 

  • Chafetz HS, Buczinski C (1992) Bacterially induced lithification of microbial mats. Palaios 7:277–293. doi:10.2307/3514973

    Article  Google Scholar 

  • De Buisonje PH (1974) Neogene and quaternary geology of Aruba, Curacao, and Bonaire (Ph.D. thesis): University of Utrecht, The Netherlands, p 293

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthra Island, Bahamas). Sed Geol 51:745–765

    Google Scholar 

  • Dupraz C, Reid PR, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162. doi:10.1016/j.earscirev.2008.10.005

    Article  Google Scholar 

  • Ehrlich HL, Newman DK (eds) (2008) Geomicrobiology, 5th edn. Boca Raton, FL, p 628

    Google Scholar 

  • Folk RL, Chafetz HS, Tiezzi PA (1985) Bizarre forms of depositional and diagenetic calcite in hot-spring travertines, central Italy. SEPM Special Publication 36, Carbonate Sediments, pp 349–369

  • Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. In: Banfield JF, Nealson KH (eds), Geomicrobiology: interactions between microbes and minerals: reviews in mineralogy: Washington, D.C., Mineralogical Society of America, vol. 35, pp 161–180

  • Fouke BW, Beets DJ, Meyers WJ, Hanson GN, Melillo AJ (1996) 87Sr/86Sr chronostratigraphy and dolomitization history of the Seroe Domi Formation, Curacao (Netherlands Antilles). Facies 35:293–320. doi:10.1007/BF02536966

    Article  Google Scholar 

  • Gaines AM (1977) Protodolomite redefined. J Sediment Res 47(2):543–546

    Google Scholar 

  • Gerasimenko LM, Mikhodyuk OS (2009) Halophilic algal-bacterial and cyanobacterial communities and their role in carbonate precipitation. Paleontol J 43(8):940–957

    Article  Google Scholar 

  • Graf DL, Goldsmith JR (1956) Some hydrothermal syntheses of dolomite and protodolomite. J Geol 64(2):173–186

    Article  Google Scholar 

  • Gregg JM, Bish DL, Kaczmarek SE, Machel HG (2015) Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology 62(6):1749–1769

    Article  Google Scholar 

  • Kaczmarek SE, Gregg JM, Bish DL, Machel HG, Fouke BW (2017) Dolomite, very high-magnesium calcite, and microbes—implications for the microbial model of dolomitization. SEPM Special Publication No. 109

  • Kahle CF (1965) Possible roles of clay minerals in the formation of dolomite. J Sediment Res 35(2):448–453

    Google Scholar 

  • Krause S, Liebetrau V, Gorb S, Sánchez-Román M, McKenzie JA, Treude T (2012) Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology 40(7):587–590

    Article  Google Scholar 

  • Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. SEPM Special Publication No. 28, pp 87–110

  • Leveille RJ, Fyfe WS, Longstaffe FJ (2000) Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves. Chem Geol 169:339–355. doi:10.1016/s0009-2541(00)00213-8

    Article  Google Scholar 

  • Machel HG, Gregg JM, Bish DL, Kaczmarek S (2015) Microbial dolomite that isn’t dolomite. 15th Bathurst Meeting, 13–16th July, 2015, University of Edinburgh, U.K. Technical Program with Abstracts, p 80

  • Rivadeneyra MA, Ramos-Cormenzana A, Delgado G, Delgado R (1996) Process of carbonate precipitation by Deleya halophile. Curr Microbiol 32:308–313. doi:10.1007/s002849900055

    Article  Google Scholar 

  • Roberts J, Bennett PC, González LA, Macpherson GL, Miliken KL (2004) Microbial precipitation of dolomite in methanogenic groundwater. Geology 32:277–280. doi:10.1130/G20246.2

    Article  Google Scholar 

  • Sánchez-Navas A, Martín-Algarra A, Nieto F (1998) Bacterially-mediated authigenesis of clays in phosphate stromatolites. Sedimentology 45:519–533. doi:10.1046/j.1365-3091.1998.00157.x

    Article  Google Scholar 

  • Sánchez-Román M (2006) Calibration of microbial and geochemical signals related to dolomite formation by moderately halophilic aerobic bacteria: Significance and implication of dolomite in the geologic record (Ph.D. thesis): Switzerland, ETH Zurich (Swiss Federal Institute of Technology), p 134

  • Sánchez-Román M, Rivadeneyra M, Vasconcelos C, Mckenzie JA (2007) Biomineralization of carbonate and phosphate by halophilic bacteria: influence of Ca2+ and Mg2+ ions. FEMS Microbiol Ecol 61:279–284

    Google Scholar 

  • Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie JA, Zenobi R, Rivadeneyra MA (2008) Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology 36:879–882. doi:10.1130/G25013A.1

    Article  Google Scholar 

  • Sánchez-Román M, Romanek CS, Fernández-Remolar DC, Sánchez-Navas A, McKenzie JA, Pibernat RA, Vasconcelos C (2011) Aerobic biomineralization of Mg-rich carbonates: implications for natural environments. Chem Geol 281(3):143–150

    Article  Google Scholar 

  • Sibley DF (1980) Climatic control of dolomitization, Seroe Domi Formation (Pliocene). Bonaire, NA

    Book  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization: cell biology and mineral deposition. Academic Press, San Diego

    Google Scholar 

  • Spadafora A, Perri E, McKenzie JA, Vasconcelos C (2010) Microbial biomineralization processes forming modern Ca: Mg carbonate stromatolites. Sedimentology 57(1):27–40

    Article  Google Scholar 

  • van Lith Y, Wartmann R, Vasconcelos C, McKenzie JA (2003a) Microbial fossilization in carbonates sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology 50:237–245. doi:10.1046/j.1365-3091.2003.00550.x

    Article  Google Scholar 

  • van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003b) Sulfate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1:71–79. doi:10.1046/j.1472-4669.2003.00003.x

    Article  Google Scholar 

  • Vasconcelos C, McKenzie JA (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lago Vermelha, Rio de Janeiro, Brazil). J Sediment Res 67:378–390

    Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222. doi:10.1038/377220a0

    Article  Google Scholar 

  • Vasconcelos C, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320. doi:10.1130/G20992.1

    Article  Google Scholar 

  • Visscher J, Stolz JF (2005) Microbial mats as bioreactors: populations, process, and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100. doi:10.1016/j.palaeo.2004.10.016

    Article  Google Scholar 

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094. doi:10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2

    Article  Google Scholar 

  • Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong region, South Australia: significance and implications. Sedimentology 52:987–1008. doi:10.1111/j.1365-3091.2005.00732.x

    Article  Google Scholar 

  • Zhang F, Xu H, Konishi H, Roden EE (2010) A relationship between d104 value and composition in the calcite-disordered dolomite solid–solution series. Am Miner 95(11–12):1650–1656

    Article  Google Scholar 

  • Zhang F, Xu H, Konishi H, Shelobolina ES, Roden E (2012) Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite. Am Miner 97(4):556–567

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank David Budd and all of the anonymous reviewers that helped shape this manuscript with their insightful comments and suggestions. Special thanks to Brenda Kirkland for insight and guidance during the pilot portion of this project. The Carmabi Research Institute provided logistical assistance for field reconnaissance. Mr. R. Sledge Simmons provided funding for lodging. A Grant from the National Speleological Society provided funds for equipment use. Mississippi State University Department of Geosciences assisted with field and analytical expenses. Special thanks for laboratory assistance during TEM imaging/analysis to Amanda Lawrence and Rooban Venkatesh K. G. Thirumalai of I2AT at Mississippi State University. Sam Houston State University Department of Geography and Geology assisted with TEM analytical expenses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Sumrall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumrall, J.B., Larson, E.B. & Mylroie, J.E. Very high magnesium calcite formation and microbial communities found in porosity of the Seroe Domi Formation of Curacao, Netherland Antilles. Carbonates Evaporites 32, 123–133 (2017). https://doi.org/10.1007/s13146-017-0352-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0352-7

Keywords

Navigation