Carbonates and Evaporites

, Volume 32, Issue 2, pp 231–241 | Cite as

Depositional environment characteristics of Ulukışla Evaporites, Central Anatolia, Turkey

  • Şeref Keskin
  • Mehmet Şener
  • Mehmet Furkan Şener
  • Muhammed Zeynel Öztürk
Original Article


This paper examines evaporated deposits of gypsum known as the Ulukışla Evaporites located in the Ulukışla Basin, central Anatolia, Turkey. The Late Eocene compression between the Eurasian and Afro-Arabian plates formed numerous shallow epicontinental basins in SE central Anatolia. During this period, the Ulukışla Basin was a shallow marine environment. The composition of the Ulukışla Basin indicates that gypsum and stromatolite were deposited due to an arid climate and sea level oscillation between 37.25 and 38.52 Ma. Oxygen, sulfur, and strontium isotopes and the geochemistry of the evaporated rocks were measured to understand the paleoenvironment of this formation. Trace element analyses of Fe, K, Mg, Na, Mn, Sr, Ni, and Cu from the gypsum samples showed very high variability. The average K/Na, Sr/Ca, and Mg/Na were measured to be 0.4, 2.35, and 2.9 %, respectively, which indicates that the Ulukışla gypsum lies in a formerly hypersaline environment. 87Sr/86Sr, 18O, and 34S isotope ratios indicate that the gypsum was deposited in marine water then mixed with fresh continental water.


Central Anatolia Ulukışla basin Sedimentology Geochemistry Isotope Evaporates 



Financial support for this study by Nigde University Research Found (NUAF) (Project No: FEB 2008/22) is gratefully acknowledged.


  1. Akay E (1989) Evolution of cratonic basin after collision in Eastern Taurus. MTA J 109:77–88 (in Turkish) Google Scholar
  2. Alpaslan M, Boztuğ D, Frei R, Temel A, Kurt MA (2006) Geochemical and Pb–Sr–Nd isotopic composition of the ultrapotassic volcanic rock from the extension-related Çamardı-Ulukışla basin, Niğde province, central Anatolia, Turkey. J Asian Earth Sci 27:613–627CrossRefGoogle Scholar
  3. Averty KB, Paytan A (2003) Empirical partition coefficients for Sr and Ca in marine barite: implications for reconstructing seawater Sr and Ca concentrations. Geochem Geophy Geosyst 4:1525–2027. doi: 10.1029/2002GC000426 Google Scholar
  4. Beets CJ (1991) The late Neogene 87Sr/86Sr isotopic record in the western Arabian Sea, Site 722. In: Prell WL, Niitsuma N, et al. (eds) Proceedings of the Ocean Drilling Program, scientific results, College Station, TX (Ocean Drilling Program), 117: 459–463. doi: 10.2973/
  5. Böttcher ME, Thamdrup B (2001) Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochim Cosmochim Acta 65:1573–1581CrossRefGoogle Scholar
  6. Böttcher ME, Thamdrup B, Vennemann TW (2001) Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochim Cosmochim Acta 65:1601–1609CrossRefGoogle Scholar
  7. Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HR, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–591CrossRefGoogle Scholar
  8. Butler GP (1969) Modern evaporate deposition and geochemistry of coexisting brines, the Sabkha, Trucial Coast, Arabian Gulf. J Sediment Petrol 39:70–89Google Scholar
  9. Cendon DI, Peryt TM, Ayora C, Pueyo JJ, Taberner C (2004) The importance of recycling processes in the Middle Miocene Badenianevaporite basin (Carpathian foredeep): palaeoenvironmental implications. Palaeogeogr Palaeoecol 212:141–158CrossRefGoogle Scholar
  10. Clark M, Robertson A (2002) The role of the Early Tertiary Ulukışla Basin, southern Turkey, in suturing of the Mesozoic Tethys Ocean. J Geol Soc Lond 159:673–690CrossRefGoogle Scholar
  11. Clark M, Robertson A (2005) Uppermost Cretaceous–Lower Tertiary Ulukışla Basin, south-central Turkey: sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sediment Geol 173:15–51CrossRefGoogle Scholar
  12. Demirtaşlı E, Turhan N, Bilgin AZ, Selim M (1984) Geology of the Bolkar Mountains. Geology of the Taurus Belt, Proceedings international symposium mineral research and exploration Institute of Turkey (MTA), Ankara, Turkey, p 125–141Google Scholar
  13. DePaolo DJ, Ingram BL (1985) High-resolution stratigraphy with strontium isotopes. Science 227:938–941CrossRefGoogle Scholar
  14. Dilek Y, Thy P, Hacker B, Grundvig S (1999) Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): implications for the Neotethyanocean. Geol Soc Am Bull 111:1192–1216CrossRefGoogle Scholar
  15. Elderfield H (1986) Strontium isotope stratigraphy. Palaeogeogr Palaeoecol 57:71–79CrossRefGoogle Scholar
  16. Engin C (2013) Structural architecture and tectonic evolution of the Ulukısla sedimentary basin in south-central Turkey. Master thesis, Miami UniversityGoogle Scholar
  17. Fontes JC, Letolle R, Nesteroff WD, Ryan WBF (1973) Oxygen, carbon, sulfur, and hydrogen stable isotopes in carbonate and sulfate mineral phases of Neogene evaporites, sediments, and in interstitial waters. In: Ryan WBF, Hsii KJ et al. (eds), Initial reports DSDP, US Government Printing Office, Washington, DC, vol 13, pp 788–796Google Scholar
  18. Görür N, Tüysüz O, Şengör AMC (1998) Tectonic evolution of the central Anatolian basins. Int Geol Rev 40:831–850CrossRefGoogle Scholar
  19. Gündogan İ, Önal M, Depçi T (2005) Sedimentology, petrography and diagenesis of Eocene–Oligocene evaporites: the Tuzhisar Formation, SW Sivas Basin, Turkey. J Asian Earth Sci 25:791–803CrossRefGoogle Scholar
  20. Gündoğan İ, Helvacı C, Sözbilir H (2008) Gypsiferous carbonates at Honaz Dağı (Denizli): first documentation of Triassic gypsum in western Turkey and its tectonic significance. J Asian Earth Sci 32:49–65CrossRefGoogle Scholar
  21. Gürer ÖF, Gürer A (1999) Development of evaporites and the counterclockwise rotation of Anatolia, Turkey. Int Geol Rev 41:607–622CrossRefGoogle Scholar
  22. Halas S, Szaran J (1999) Low-temperature thermal decomposition of sulfate to SO2 for on-line 34S/32S analysis. Anal Chem 77:3254–3257CrossRefGoogle Scholar
  23. Hardie LA (1991) On the significance of evaporates. Annu Rev Earth PL Sc 19:131–168CrossRefGoogle Scholar
  24. Hardie LA, Lowenstein TK, Spencer RJ (1985) The problem of distinguishing between primary and secondary features in evaporites. Six symposium on salt. The Salt Institute, Alexandria, pp 11–39Google Scholar
  25. Hess J, Bender ML, Schilling JGO (1986) Evolution of the strontium-87 to strontium-86 in seawater from Cretaceous to present. Science 231:979–984CrossRefGoogle Scholar
  26. Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature 267:403–408CrossRefGoogle Scholar
  27. Holser WT (1984) Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: Holland HD, Trendall AF (eds), Patterns of change in Earth evolution 5: 123–143Google Scholar
  28. Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chem Geol 1:93–135CrossRefGoogle Scholar
  29. Holser WT, Schidlowski M, Mackenzie FT, Maynard JB (1988) Geochemical cycles of carbon and sulfur. In: Gregor CB, Garrels RM, Mackenzie FT, Maynard JB (eds) Chemical cycles in the evolution of the earth, 1st edn. Wiley, New York, pp 107–173Google Scholar
  30. Jaffey N, Robertson AHF (2001) New sedimentological and structural data from the Ecemis Fault Zone, southern Turkey: implications for its timing and offset and the Cenozoic tectonic escape of Anatolia. J Geol Soc Lond 158:367–378CrossRefGoogle Scholar
  31. Kashiwagi H, Ogawa Y, Shikazono N (2008) Relationship between weathering, mountain uplift, and climate during the Cenozoic as deduced from the global carbon–strontium cycle model. Palaeogeogr Palaeoecol 270:139–149CrossRefGoogle Scholar
  32. Keskin Ş, Şener M, Şener MFŞ (2012) Geochemical features of the Ulukışla stromatolites. 64. Türkiye Jeoloji Kurultayı Bildirileri, pp 566–567 (in Turkish with English abstract)Google Scholar
  33. Koch PL, Zachos JC, Dettman DL (1995) Stable isotopic stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeogr Palaeoecol 115:61–89CrossRefGoogle Scholar
  34. Kunasek SA, Alexander B, Steig EJ, Sofen ED, Jackson TL, Thiemens MH, McConnell JR, Gleason DJ, Amos HM (2010) Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core. J Geophys Res 115:D18313. doi: 10.1029/2010JD013846 CrossRefGoogle Scholar
  35. Kushnir J (1982) The composition and origin of brines during the Messinian desiccation event in the Mediterranean basin as deduced from the concentrations of ions coprecipitated with gypsum and anhydrite. Chem Geol 35:333–350CrossRefGoogle Scholar
  36. Lloyd RM (1968) Oxygen isotope behavior in sulfate–water system. J Geophys Res 73:6099–6110. doi: 10.1029/JB073i018p06099 CrossRefGoogle Scholar
  37. Longinelli A (1989) Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In: Fritz P, Ch Fontes J (eds) Handbook of environmental isotope geochemistry, vol 3. Elsevier, Amsterdam, pp 219–255Google Scholar
  38. Lu FH, Meyers WJ (2003) Sr, S, and O (SO4) isotopes and the depositional environments of the upper Miocene evaporites, Spain. J Sediment Res 73:444–450CrossRefGoogle Scholar
  39. Lu FH, Meyers WJ, Schoonen MA (1997) Minor and trace element analyses on gypsum: an experimental study. Chem Geol 142:1–10CrossRefGoogle Scholar
  40. Lu FH, Meyers WJ, Hanson GN (2002) Trace element and environmental significance of Messinian gypsum deposits, the Nijar Basin, southeastern Spain. Chem Geol 192:149–161CrossRefGoogle Scholar
  41. Lutting G, Steffens P (1976) Paleogeographical atlas of Turkey from the Oligocene to Pleistocene. Hannover, Bundesanstalt für Geowissenschaften und Rohstoffe 7:64Google Scholar
  42. Lytwyn JN, Casey JF (1995) The geochemistry of post-kinematic mafic dike swarms and sub-ophiolitic metabasites, Pozant-Karsantı ophiolite, Turkey—evidence for ridge subduction. Geol Soc Am Bull 107:830–850CrossRefGoogle Scholar
  43. McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Se-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170CrossRefGoogle Scholar
  44. Michard A, Whitechurch H, Ricou LE, Montigny R, Yazgan E (1985) Tauric subduction (Malatya-Elaziğ provinces) and its bearing on tectonics of the Tethyan realm in Turkey, In: Dixon JE, Robertson AHF (eds) The geological evolution of the eastern Mediterranean. Geol Soc Spec Publ 17: 361–373Google Scholar
  45. Miller KG, Feigenson MD, Kent DV, Olsson RK (1988) Upper Eocene to Oligocene isotope (87Sr/86Sr, δ18O, δ13C) standard section. Deep sea drilling project site 522. Paleoceanography 3:223–233CrossRefGoogle Scholar
  46. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717CrossRefGoogle Scholar
  47. Nielsen H, Pilot J, Grinenko LN, Grinenko VA, Lein AY, Smith JW, Pankina RG (1991) Lithospheric sources of sulphur, in stable isotopes. In: Krouse HR, Grinenko VA (eds) Natural and anthropogenic sulphur in the environment: SCOPE 43. John Wiley, Hoboken, pp 65–132Google Scholar
  48. Oktay FY (1982) Stratigraphy and geological history of the Ulukışla and its surroundings. Bull Turk Geol Soc 25:13–23 (in Turkish with English abstract) Google Scholar
  49. Önal M, Helvaci C, Tekin E, Ayyildiz T (2008) Sedimentology and geochemistry of the middle Miocene playa lake evaporites in the Gurun Basin (S of Sivas), central Anatolia, Turkey. Carbonate Evaporite 23:11–20CrossRefGoogle Scholar
  50. Palmer MR, Edmond JM (1992) Controls over the strontium isotope composition of river water. Geochim Cosmochim Acta 56:2099–2111CrossRefGoogle Scholar
  51. Palmer MR, Elderfield H (1985) Sr isotope composition of seawater over the past 75 Myr. Nature 314:526–528CrossRefGoogle Scholar
  52. Palmer MR, Helvacı C, Fallick AE (2004) Sulphur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporites. Chem Geol 209:341–356CrossRefGoogle Scholar
  53. Paytan A, Kastner M, Campell D, Thiemens M (1998) Sulfur isotope composition of Cenozoic seawater sulfate. Science 282:1459–1462CrossRefGoogle Scholar
  54. Peryt TM, Anczkiewicz R (2014) Strontium isotope composition of middle Miocene primary gypsum (Badenian of the Polish Carpatian Foredeep Basin): evidence for continual non-marine inflow of radiogenic strontium into evaporate basin. Terra Nova 27:54–61CrossRefGoogle Scholar
  55. Pierre C, Rouchy JM (1990) Sedimentary and diagenetic evolution of Messinian evaporites in the Tyrrhenian Sea (ODP Leg 107, Sites 652, 653, and 654): petrographic, mineralogical, and stable isotope records. In: Kastens KA, Mascle J et al.(eds) Proc. ODP, Sci. Results, 107: College Station, TX (Ocean Drilling Program), pp 187–210. doi: 10.2973/
  56. Playa E, Orti F, Rosell L (2000) Marine to non-marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain: sedimentological and geochemical evidence. Sediment Geol 133:135–166CrossRefGoogle Scholar
  57. Playa E, Cendon DI, Trave A, Chivas AR, Garcia A (2007) Non-marine evaporites with both inherited marine and continental signatures: the Gulf of Carpentaria, Australia, at ∼70 ka. Sediment Geol 201:267–285CrossRefGoogle Scholar
  58. Raymo ME, Ruddiman WF, Froelich PN (1988) Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16:649–653CrossRefGoogle Scholar
  59. Reilly T, Miller KG, Feigenson MD (2002) Latest Eocene-earliest Miocene Sr isotopic reference section, Site 522, eastern South Atlantic. Paleoceanography 17:1046–1054CrossRefGoogle Scholar
  60. Ricchiuto T, McKenzie J (1978) Stable isotope investigation of Messinian sulfate samples from DSDP Leg 42A, Eastern Mediterranean Sea. Initial Rep Deep Sea Drill Project 42:657–660Google Scholar
  61. Richter FM, Rowley DB, DePaolo DJ (1992) Sr isotope evolution of seawater: the role of tectonics. Earth Planet Sci Lett 109:11–23CrossRefGoogle Scholar
  62. Rosell L, Orti F, Kasprzyk A, Playa E, Peryt TM (1998) Strontium geochemistry of Miocene primary gypsum: Messinian of southeastern Spain and Sicily and Badenian of Poland. J Sediment Res 68:63–79CrossRefGoogle Scholar
  63. Sakai H, Osaki S, Tsukagishi M (1970) Sulfur and oxygen isotopic geochemistry of sulfate in the black ore deposits of Japan. Geochem J 4:27–39CrossRefGoogle Scholar
  64. Schreiber BC, El Tabakh M (2000) Deposition and early alteration of evaporites. Sedimentology 47:215–238CrossRefGoogle Scholar
  65. Servant-Vildary S, Rouchy JM, Pierre C, Foucault A (1990) Marine and continental water contributions to a hypersaline basin using diatom ecology, sedimentology and stable isotopes: an example in the Late Miocene of the Mediterranean (Hellin Basin, southern Spain). Palaeogeogr Palaeoecol 79:189–204CrossRefGoogle Scholar
  66. Stallard RF (1995) Tectonic, environmental, and human aspect of weathering and erosion: a global review using a steady-state perspective. Annu Rev Earth PL Sc 23:11–39CrossRefGoogle Scholar
  67. Taberner C, Cendon DI, Pueyo JJ, Ayora C (2000) The use of environmental markers to distinguish marine vs. continental deposition and to quantify the significance of recycling in evaporite basins. Sediment Geol 137:213–240CrossRefGoogle Scholar
  68. Tekin E (2001) Stratigraphy, geochemistry and depositional environment of the celestine-bearing gypsiferous formations of the Tertiary Ulaş-Sivas Basin, East-Central Anatolia (Turkey). Turk J Earth Sci 10:35–49Google Scholar
  69. Tekin E, Varol B, Friedman GM (2001) A preliminary study: Celestite-bearing gypsum in the Tertiary Sivas basin, central-eastern Turkey. Carbonate Evaporite 16:93–101CrossRefGoogle Scholar
  70. Tucker ME (1991) Sequence stratigraphy of carbonate-evaporite basin: models and application to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. J Geol Soc Lond 148:1019–1036CrossRefGoogle Scholar
  71. Turchyn AV, Schrag DP (2006) Cenozoic evolution of the sulfur cycle: insight from oxygen isotopes in marine sulfate. Earth Planet Sci Lett 241:763–779CrossRefGoogle Scholar
  72. Turchyn AV, Schrag DP, Coccioni R, Montanari A (2009) Stable isotope analysis of the Cretaceous sulfur cycle. Earth Planet Sci Lett 285:115–123CrossRefGoogle Scholar
  73. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ 18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  74. Yilmaz Y (1992) New evidence and model on the evolution of southern Turkey. Geol Soc Am Bull 105:251–271CrossRefGoogle Scholar
  75. Zachos JC, Opdyke BN, Quinn TM, Jones CE, Halliday AN (1999) Early Cenozoic glaciation, Antarctic weathering, and seawater 87Sr/86Sr: is there a link? Chem Geol 161:165–180CrossRefGoogle Scholar
  76. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  77. Zorlu K, İnan S, Gül M, İnan N, Kurt MA, Alpaslan M (2011) Geological evolution of the Ulukışla Basin (Late Cretaceous-Eocene) Central Anatolia, Turkey. Bull Earth Sci Appl Res Cent Hacet Univ 32:151–170Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Şeref Keskin
    • 1
  • Mehmet Şener
    • 2
  • Mehmet Furkan Şener
    • 3
  • Muhammed Zeynel Öztürk
    • 3
  1. 1.Department of Environmental Engineering, Engineering FacultyDüzce UniversityDüzceTurkey
  2. 2.Department of Geological Engineering, Engineering FacultyNigde UniversityNigdeTurkey
  3. 3.Department of Geography, Faculty of Arts and ScienceNigde UniversityNigdeTurkey

Personalised recommendations