Carbonates and Evaporites

, Volume 32, Issue 2, pp 195–204 | Cite as

Properties of Mestaoua evaporites (southern Tunisia) for plaster industry

Original Article


Southern Tunisia exhibited thick series of naturally occurring gypsum deposits. Those evaporites may constitute important feeds for plaster industry. An in-depth study of the evaporites deposits outcropping in the Tataouine area (southern Tunisia) has been undertaken to find out their detailed physical and chemical properties. Ten gypseous samples collected from the Oued El Ghar study site were characterized using several techniques. Thus, physical–chemical characterization concerned chemical analysis by X-ray fluorescence, mineralogical analysis by X-ray diffraction and spectroscopic analysis by Fourier transform infrared. Other techniques including thermogravimetric analysis and textural analysis were used for the assessment of the Mestaoua gypsum deposits. It was found that the studied samples were mainly composed of sulfates (as \( {\text{SO}}_{3}^{ - } \)) and calcium oxide (CaO) together with minor amounts of silica, iron and magnesium oxides. This chemical composition was completed by specific surface area measurements (21.25 m2/g), volumic mass (2.33 g/cm3) and porosity (17.2 %). A technical specifications chart was established to gather the main requirements that will be used as criteria for the selection of products to be manufactured. Based on the above-mentioned analyses, natural gypsum deposits of the Mestaoua area showed the required technical specifications for use as feeds for the manufacture of plaster and derivatives, adjuvant, chemicals, among other industrial uses.


Southern Tunisia Mestaoua evaporites Gypsum Valorization Plaster 


  1. Anderson PE, Benton MJ, Trueman CN, Paterson BA, Cuny G (2007) Palaeoenvironments of vertebrates on the southern shore of Tethys: the nonmarine Early Cretaceous of Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 243:118–131. doi: 10.1016/j.palaeo.2006.07.015 CrossRefGoogle Scholar
  2. Badens E, Veesler S, Boistelle R, Chatain D (1999) Relation between young’s modulus of set plaster and complete wetting of grain boundaries by water. Colloids Surf A Physicochem Eng Asp 156:373–379. doi: 10.1016/S0927-7757(99)00097-7 CrossRefGoogle Scholar
  3. Barrier E, Bouaziz S, Angelier J, Creuzot G, Ouali J, Tricart P (1993) Mesozoic paleostress evolution in the Saharian platform (southern Tunisia). Geodin Acta 6(1):39–57. doi: 10.1080/09853111.1993.11105238 CrossRefGoogle Scholar
  4. Ben Ali F, Iucolano F, Liguori B, Piscopo D, Marino O, Caputo D (2014) Physical and mechanical characterization of sun-dried bricks. A case history: the galeb of Kebili. Mater Struct. doi: 10.1617/s11527-014-0483-4 Google Scholar
  5. Ben Ismail MH, Mrabet A (1989) Evaporite, carbonate, and siliciclastic transitions in the Jurassic sequences of southeastern Tunisia. Sediment Geol 66:65–82. doi: 10.1016/0037-0738(90)90007-G CrossRefGoogle Scholar
  6. Ben Mansour M, Soukaina CA, Benhamou B, Jabrallah SBen (2013) Thermal characterization of a Tunisian gypsum plaster as construction material. Energy Proced 42:680–688. doi: 10.1016/j.egypro.2013.11.070 CrossRefGoogle Scholar
  7. Bouaziz S (2005) Les matières premières naturelles du gouvernorat de Tataouine: caractérisation et utilisations. ODS, Tunisia, pp 285Google Scholar
  8. Bouaziz S, Barrier E, Turki MM, Tricart P (1999) La tectonique permo-mesozoique (ante-Vraconien) dans la marge sud tethysienne en Tunisie meridionale. Bull Soc Geol Fr 170:45–56Google Scholar
  9. Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253. doi: 10.1016/S0040-1951(02)00370-0 CrossRefGoogle Scholar
  10. Bouaziz S, Sghari A, Benzina M, Sdiri A, Chaabouni R (2007) Les matières premières naturelles du gouvernorat de Gabes: caractérisation et utilisations. ODS, Tunisia, pp 380Google Scholar
  11. Brown G (1972) The X-ray identification and crystal structure of clay minerals. Mineralogical Society (Clay minerals group), LondonGoogle Scholar
  12. Daligand F, Gibaru J, Lebourgeois R (1982) Le plâtre: physico-chimie, fabrication et emplois. Boulvard Saint-Germain, ParisGoogle Scholar
  13. Elsen J (2006) Microscopy of historic mortars—a review. Cem Concr Res 36:1416–1424. doi: 10.1016/j.cemconres.2005.12.006 CrossRefGoogle Scholar
  14. Gaied ME, Chaabani F, Gallala W (2015) Alunite characterization in the upper Eocene clay deposits of Central Tunisia: an implication to its genesis. Carbonates Evaporites. doi: 10.1007/s13146-015-0232-y Google Scholar
  15. Garrido F, Illera V (2005) Effect of the addition of gypsum- and lime-rich industrial by-products on Cd, Cu and Pb availability and leachability in metal-spiked acid soils. Appl Geochem 20:397–408. doi: 10.1016/j.apgeochem.2004.08.001 CrossRefGoogle Scholar
  16. Han-Cheol C, Hori M, Yoshida T, Yamada N, Komada Y, Tamaki Y, Miyazaki T (2014) Tri-calcium phosphate (ß-TCP) can be artificially synthesized by recycling dihydrate gypsum hardened. Dent Mater J 33:845–851. doi: 10.4012/dmj.2014-040 CrossRefGoogle Scholar
  17. Jordá JD, Jordán MM, Ibanco-Cañete R, Montero MA, Reyes-Labarta JA, Sánchez A, Cerdán M (2015) Mineralogical analysis of ceramic tiles by FTIR: a quantitative attempt. Appl Clay Sci 115:1–8. doi: 10.1016/j.clay.2015.07.005 CrossRefGoogle Scholar
  18. Kojima Y, Yasue T (2006) Synthesis of large plate-like gypsum dihydrate from waste gypsum board. J Eur Ceram Soc 26:777–783. doi: 10.1016/j.jeurceramsoc.2005.06.018 CrossRefGoogle Scholar
  19. Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT Food Sci Technol 57:106–115. doi: 10.1016/j.lwt.2014.01.024 CrossRefGoogle Scholar
  20. Marques VMF, Tulyaganov DU, Agathopoulos S, Gataullin VK, Kothiyal GP, Ferreira JMF (2006) Low temperature synthesis of anorthite based glass-ceramics via sintering and crystallization of glass-powder compacts. J Eur Ceram Soc 26:2503–2510. doi: 10.1016/j.jeurceramsoc.2005.07.055 CrossRefGoogle Scholar
  21. Moore MD, Reynolds RCJ (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, OxfordGoogle Scholar
  22. Poon C, Kou S, Lam L, Lin Z (2001) Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4). Cem Concr Res 31:873–881. doi: 10.1016/S0008-8846(01)00478-1 CrossRefGoogle Scholar
  23. Raulin C, de Lamotte DF, Bouaziz S, Khomsi S, Mouchot N, Ruiz G, Guillocheau F (2011) Late Triassic—early Jurassic block tilting along E–W faults, in southern Tunisia: new interpretation of the Tebaga of Medenine. J Afr Earth Sci 61:94–104. doi: 10.1016/j.jafrearsci.2011.05.007 CrossRefGoogle Scholar
  24. San-Antonio-González A, Del Río Merino M, Arrebola CV, Villoria-Sáez P (2015) Lightweight material made with gypsum and extruded polystyrene waste with enhanced thermal behaviour. Constr Build Mater 93:57–63. doi: 10.1016/j.conbuildmat.2015.05.040 CrossRefGoogle Scholar
  25. Schulz E, Abichou A, Hachicha T, Pomel S, Salzmann U, Zouari K (2002) Sebkhas as ecological archives and the vegetation and landscape history of southeastern Tunisia during the last two millennia. J Afr Earth Sci 34:223–229. doi: 10.1016/S0899-5362(02)00021-0 CrossRefGoogle Scholar
  26. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N (2010) Mineralogical and spectroscopic characterization, and potential environmental use of limestone from the Abiod formation, Tunisia. Environ Earth Sci 61:1275–1287. doi: 10.1007/s12665-010-0450-5 CrossRefGoogle Scholar
  27. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N, Jamousssi F, Tase N (2011) Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chem Eng J 172:37–46. doi: 10.1016/j.cej.2011.05.015 CrossRefGoogle Scholar
  28. Sdiri A, Higashi T, Jamoussi F, Bouaziz S, Hatta T, Jamoussi F, Tase N, Bouaziz S (2012) Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J Environ Manag 93:171–179. doi: 10.1016/j.jenvman.2011.08.002 CrossRefGoogle Scholar
  29. Sdiri A, Higashi T, Bouaziz S, Benzina M (2014) Synthesis and characterization of silica gel from siliceous sands of southern Tunisia. Arab J Chem 7:486–493. doi: 10.1016/j.arabjc.2010.11.007 CrossRefGoogle Scholar
  30. Selmani S, Essaidi N, Gouny F, Bouaziz S, Joussein E, Driss A, Sdiri A, Rossignol S (2015) Physical–chemical characterization of Tunisian clays for the synthesis of geopolymers materials. J Afr Earth Sci. doi: 10.1016/j.jafrearsci.2014.12.009 Google Scholar
  31. Singh NB, Middendorf B (2007) Calcium sulfate hemihydrate hydration leading to gypsum crystallization. Prog Cryst Growth Charact Mater 53:57–77. doi: 10.1016/j.pcrysgrow.2007.01.002 CrossRefGoogle Scholar
  32. SIPS (2015) Industrial plaster [WWW Document]Google Scholar
  33. Widerlund A, Shcherbakova E, Carlsson E, Holmström H, Öhlander B (2005) Laboratory study of calcite–gypsum sludge–water interactions in a flooded tailings impoundment at the Kristineberg Zn–Cu mine, northern Sweden. Appl Geochem 20:973–987. doi: 10.1016/j.apgeochem.2004.12.003 CrossRefGoogle Scholar
  34. Yang F, Liu Y, Zuo G, Wang X, Hua P, Ma Q, Dong G, Yue Y, Zhang B (2014) Hydroxyapatite conversion layer for the preservation of surface gypsification marble relics. Corros Sci 88:6–9. doi: 10.1016/j.corsci.2014.07.003 CrossRefGoogle Scholar
  35. Zhang D, Yuan Z, Wang S, Jia Y, Demopoulos GP (2015) Incorporation of arsenic into gypsum: relevant to arsenic removal and immobilization process in hydrometallurgical industry. J Hazard Mater 300:272–280. doi: 10.1016/j.jhazmat.2015.07.015 CrossRefGoogle Scholar
  36. Zhou J, Liu C, Shu Z, Yu D, Zhang Q, Li T, Xue Q (2015a) Preparation of specific gypsum with advanced hardness and bending strength by a novel in-situ loading-hydration process. Cem Concr Res 67:179–183. doi: 10.1016/j.cemconres.2014.09.004 CrossRefGoogle Scholar
  37. Zhou J, Shu Z, Tiantian L, Dongxue Y, Sheng Z, Wang Y (2015b) Novel fabrication route for non-fired ceramic tiles only using gypsum. Ceram Int 41:9193–9198. doi: 10.1016/j.ceramint.2015.03.164 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory «Water-Energy-Environment», National Engineering SchoolUniversity of SfaxSfaxTunisia

Personalised recommendations