Development of Sea Surface Temperature Retrieval Algorithms for Geostationary Satellite Data (Himawari-8/AHI)

Abstract

This study provides an overview of the development of sea surface temperature retrieval algorithms by using Himawari-8/AHI data as a proxy data of GK-2A with quite similar spectral bands except for 2.26-μm and 1.38-μm bands. For contingency preparation, several potential algorithms, such as Multi-channel SST (MCSST), Non-linear SST (NLSST), Hybrid SST, and Multi-band SST, were developed over the full disk region. The accuracy of each algorithm was assessed by determining the root mean square error (RMSE) and bias errors from the regression procedure of the matchup database between satellite data and quality controlled drifter temperature in-situ data for a year, from August 2016 to July 2017. Comparison of the four algorithms revealed that the Multi-band algorithm performed markedly well, with the smallest RMSE of ~0.4 °C. Time-varying validation of the estimated SST accuracy highlighted consistently low RMSE as well as the stability of the Multi-band algorithm. In addition, it is suggested that SSTs with a satellite zenith angle exceeding 60° tended to have relatively large errors which degraded the quality of the estimated SSTs. It is concluded that the SST coefficients should be updated each day, based on the previous one-month matchup database, contributing to the expected SST accuracy in the future with the degradation of the sensor or other aging effects. Further, this work discusses the importance of cloudy or cloud-contaminated pixels for the better performance of SST retrieval procedures and their real-time operational use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Anding, D., Kauth, R.: Estimation of sea surface temperature from space. Remote Sens. Environ. 1(4), 217–220 (1970)

    Article  Google Scholar 

  2. Barton, I.J.: Transmission model and ground-truth investigation of satellite-derived sea surface temperatures. J. Appl. Meteorol. 24(6), 508–516 (1985)

    Article  Google Scholar 

  3. Bernstein, R.L.: Sea surface temperature estimation using the NOAA 6 satellite advanced very high resolution radiometer. J. Geophys. Res. 87(C12), 9455–9465 (1982)

    Article  Google Scholar 

  4. Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., Yoshida, R.: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorolog. Soc. Jpn. Ser. II. 94(2), 151–183 (2016)

    Article  Google Scholar 

  5. Casey, K.S., Cornillon, P.: A comparison of satellite and in situ–based sea surface temperature climatologies. J. Clim. 12(6), 1848–1863 (1999)

    Article  Google Scholar 

  6. Casey, K.S., Brandon, T.B., Cornillon, P., Evans, R.: The past, present, and future of the AVHRR pathfinder SST program. In: Barale, V., Gower, J.F.R., Alberotanza, L. (eds.) Oceanography from Space, pp. 273–287. Springer, Dordrecht (2010)

    Google Scholar 

  7. Cayula, J.F.P., May, D.A., McKenzie, B.D., Willis, K.D.: VIIRS-derived SST at the naval oceanographic office: from evaluation to operation. In: Sensing, O., Monitoring, V. (eds.) SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, Baltimore (2013)

    Google Scholar 

  8. Chelton, D.B.: The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J. Clim. 18(4), 530–550 (2005)

    Article  Google Scholar 

  9. Chin, T.M., Vázquez-Cuervo, J., Armstrong, E.M.: A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens. Environ. 200, 154–169 (2017)

  10. Donlon, C., Robinson, I., Casey, K.S., Vázquez-Cuervo, J., Armstrong, E., Arino, O., Gentemann, C., May, D., LeBorgne, P., Piollé, J., Barton, I., Beggs, H., Poulter, D.J.S., Merchant, C.J., Bingham, A., Heinz, S., Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D., Mutlow, C., Reynolds, R.W., Kawamura, H., Rayner, N.: The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 88(8), 1197–1214 (2007)

  11. Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., Wimmer, W.: The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012)

    Article  Google Scholar 

  12. Hocking, J., Rayer, P. J. , Rundle, D., Saunders, R. W. , Matricardi, M. , Geer, A. , Brunel, P., Vidot, J.: RTTOV v11 Users Guide. NWP SAF (2014)

  13. Ignatov, A., Petrenko, B., Shabanov, N., Kihai, Y., Dash, P., Liang, X.: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Sea Surface Temperature. NOAA NESDIS Center for Satellite Applications and Research (2010)

  14. Kilpatrick, K.A., Podesta, G.P., Evans, R.: Overview of the NOAA/NASA advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. 106(C5), 9179–9197 (2001)

    Article  Google Scholar 

  15. Kim, H. Y., Park, K. A.: Comparison of sea surface temperature from oceanic buoys and satellite microwave measurements in the western coastal region of Korean Peninsula. J. Korean Earth Sci. Soc. 396(6), 555-567 (2018) (in Korean with English abstract)

  16. Kramar, M., Ignatov, A., Petrenko, B., Kihai, Y., & Dash, P.: Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system. In: SPIE defense + security (eds.) ocean Sensing and Monitoring VIII. International Society for Optics and Photonics, Baltimore (2016)

  17. Lumpkin, R., Pazos, M.: Measuring surface currents with surface velocity program drifters: the instrument, its data, and some recent results. In: Griffa, A., Kirwan, A.D., Mariano, A., Özgökmen, T., Rossby, H.T. (eds.) Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, Pp. 39–67. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  18. Martin, M.J., Hines, A., Bell, M.J.: Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact. Q. J. R. Meteorol. Soc. 133, 981–995 (2007)

    Article  Google Scholar 

  19. McBride, W., Arnone, R., Cayula, J.F.: Improvements of Satellite SST Retrievals at Full Swath, in: SPIE Defense, Security, and Sensing (Eds.) Ocean Sensing and Monitoring V. International Society for Optics and Photonics, Baltimore (2013)

    Google Scholar 

  20. McClain, E.P., Pichel, W.G., Walton, C.C.: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. 90(C6), 11587–11601 (1985)

    Article  Google Scholar 

  21. Murata, H., Takahashi, M., Kosaka, Y.: VIS and IR bands of Himawari-8/AHI compatible with those of MTSAT-2/imager. MSC technical note. 60, 1–18 (2015)

    Google Scholar 

  22. OSI SAF: Geostationary Sea Surface Temperature Product User Manual. EUMETSAT, Berlin (2011)

    Google Scholar 

  23. Park, K.A., Lee, E.Y., Li, X., Chung, S.R., Sohn, E.H., Hong, S.: NOAA/AVHRR Sea surface temperature accuracy in the east/Japan Sea. Int. J. Digital Earth. 8(10), 784–804 (2015)

    Article  Google Scholar 

  24. Petrenko, B., Ignatov, A., Kihai, Y., Heidinger, A.: Clear-sky mask for the advanced clear-sky processor for oceans. J. Atmos. Ocean. Technol. 27(10), 1609–1623 (2010)

    Article  Google Scholar 

  25. Petrenko, B., Ignatov, A., Shabanov, N., Kihai, Y.: Development and evaluation of SST algorithms for GOES-R ABI using MSG SEVIRI as a proxy. Remote Sens. Environ. 115(12), 3647–3658 (2011)

    Article  Google Scholar 

  26. Prabhakara, C., Dalu, G., Kunde, V.G.: Estimation of sea surface temperature from remote sensing in the 11-to 13-μm window region. J. Geophys. Res. 79(33), 5039–5044 (1974)

    Article  Google Scholar 

  27. Reynolds, R.W., Smith, T.M.: A high-resolution global sea surface temperature climatology. J. Clim. 8(6), 1571–1583 (1995)

    Article  Google Scholar 

  28. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W.: An improved in situ and satellite SST analysis for climate. J. Clim. 15(13), 1609–1625 (2002)

    Article  Google Scholar 

  29. Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 11(7), 2717–2737 (1982)

    Article  Google Scholar 

  30. Vázquez-Cuervo, J., Armstrong, E.M., Casey, K.S., Evans, R., Kilpatrick, K.: Comparison between the pathfinder versions 5.0 and 4.1 sea surface temperature datasets: a case study for high resolution. J. Clim. 23(5), 1047–1059 (2010)

    Article  Google Scholar 

  31. Walton, C.C., Pichel, W.G., Sapper, J.F., May, D.A.: The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. 103(C12), 27999–28012 (1998)

    Article  Google Scholar 

  32. Woo, H.J., Park, K., Li, X., Lee, E.Y.: Sea surface temperature retrieval from the first Korean geostationary satellite COMS data: validation and error assessment. Remote Sens. 10(12), 1916 (2018)

    Article  Google Scholar 

  33. World Meteorological Organization: Manual on the Global Telecommunication System. World Meteorological Organization (2008)

  34. Xu, F., Ignatov, A.: In situ SST quality monitor (iQUAM). J. Atmos. Ocean. Technol. 31(1), 164–180 (2014)

    Article  Google Scholar 

  35. Závody, A.M., Mutlow, C.T., Llewellyn-Jones, D.T.: Cloud clearing over the ocean in the processing of data from the along-track scanning radiometer (ATSR). J. Atmos. Ocean. Technol. 17, 595–615 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “Development of Scene Analysis & Surface Algorithms” project, funded by ETRI, which is a subproject of “Development of Geostationary Meteorological Satellite Ground Segment (NMSC-2019-01)” program funded by NMSC (National Meteorological Satellite Center) of KMA (Korea Meteorological Administration). This work was partly funded by the Korea Meteorological Administration Research and Development Program under Grant KMI2018-05110.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ae Park.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Kyu-Tae Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, KA., Woo, HJ., Chung, SR. et al. Development of Sea Surface Temperature Retrieval Algorithms for Geostationary Satellite Data (Himawari-8/AHI). Asia-Pacific J Atmos Sci 56, 187–206 (2020). https://doi.org/10.1007/s13143-019-00148-3

Download citation

Keywords

  • Sea surface temperature
  • MCSST
  • NLSST
  • Hybrid SST
  • Multi-band SST
  • Himawari-8/AHI
  • SST coefficients