Skip to main content
Log in

Impact of Turbulent Mixing in the Stratocumulus-Topped Boundary Layer on Numerical Weather Prediction

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The impact of enhanced turbulent mixing induced by radiative cooling at the top of the stratocumulus-topped boundary layer (STBL) on numerical weather prediction is examined. An additional term involving top-down turbulent mixing via in-cloud radiative cooling is applied to the Yonsei University (YSU) planetary boundary layer (PBL) parameterization scheme using a top-down diffusivity profile and cloud-top entrainment. The modified scheme is evaluated in an advection fog case over the Yellow Sea of Korea using the Weather Research and Forecasting (WRF) model and in global medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). In the fog case simulation, consideration of the additional top-down mixing parameterization in the YSU PBL simulates less formation and more rapid dispersion of the fog. As a result, the modified scheme simulates a drier and warmer boundary layer and a moister and cooler layer above the PBL. The modified algorithm also improves surface temperature prediction over the Yellow Sea accompanying early dissipation of the fog. In the global medium-range forecast experiment, the modified scheme simulates overall enhanced PBL mixing over the STBL in the tropics and subtropical ocean, showing drier and warmer regions near the surface and moister and cooler regions above the PBL, resulting in prediction of reduced low level cloud amount and increased downward shortwave radiation at the surface. The modified scheme appears to improve systematic bias in temperature and humidity in the lower troposphere compared to the control simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, H., 2003: Global air quality and pollution. Science, 302, 1716-1719.

    Article  Google Scholar 

  • Bae, S. Y., S.-Y. Hong, and K.-S. Lim, 2016: Coupling WRF doublemoment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model. Adv. Meteorol., 2016, 5070154, doi:10.1155/5070154.

    Article  Google Scholar 

  • Baek, S. H., 2017: A revised radiation package of G-packed McICA and two-stream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9, 1628-1640, doi:10. 1002/2017MS000994.

    Article  Google Scholar 

  • Bergot, T., E. Terradellas, J. Cuxart, A. Mira, O. Liechti, M. Mueller, and N. W. Nielsen, 2007: Intercomparison of single-column numerical models for the prediction of radiation fog. J. Appl. Meteor. Climatol., 46, 504-521.

    Article  Google Scholar 

  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941-3961.

    Article  Google Scholar 

  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22, 3422-3448.

    Article  Google Scholar 

  • Byun, Y.-H., and S.-Y. Hong, 2004: Impact of boundary layer processes on simulated tropical rainfall. J. Climate, 17, 4032-4044.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Wea. Rev. 129, 569-585.

    Google Scholar 

  • Choi, H.-J. and H.-Y. Chun, 2011: Momentum flux spectrum of convective gravity waves. Part I: An update of a parameterization using mesoscale simulations. J. Atmos. Sci., 68, 739-759, doi:10.1175/2010JAS3552.1.

    Google Scholar 

  • Choi, H.-J, and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast. J. Geophys. Res., 120, 12445-12457, doi:10.1002/2015JD024230.

    Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi: 10.5194/gmd-8-975-2015.

    Article  Google Scholar 

  • Flemming, J., and Coauthors, 2015: Tropospheric chemistry in the Integrated Forecasting System of ECMWF, Geosci. Model Dev., 8, 975-1003, doi:10.5194/gmd-8-975-2015, 2015.

    Article  Google Scholar 

  • Ghonima, M. S., H. Yang, C. K. Kim, T. Heus, and J. Kleissl, 2017: Evaluation of WRF SCM simulations of stratocumulus-topped marine and coastal boundary layers and improvements to turbulence and entrainment parameterizations. J. Adv. Model. Earth Syst., 9, 2635-2653, doi:10.1002/2017MS001092.

    Article  Google Scholar 

  • Gultepe, I., and Coauthors, 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. geophys. 164, 1121-1159.

    Article  Google Scholar 

  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520-533, doi:10.1175/WAF-D-10-05038.1.

    Article  Google Scholar 

  • Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi:10.1175/MWR-D-15-0255.1.

    Article  Google Scholar 

  • Hartmann, D. L., and D. A. Short, 1980: On the use of earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37, 1233-1250.

    Article  Google Scholar 

  • Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481-1496, doi:10.1002/qj.665.

    Article  Google Scholar 

  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339.

    Article  Google Scholar 

  • Hong, S.-Y., and J. Jang, 2018: Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0013-3.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120.

    Article  Google Scholar 

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.

    Article  Google Scholar 

  • Hong, S.-Y., J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lowertropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model, Wea. Forecasting, 23, 523-531.

    Article  Google Scholar 

  • Hong, S.-Y., and Coauthors, 2013: The global/regional integrated model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.

    Article  Google Scholar 

  • Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting (in press). Asia-Pac. J. Atmos.Sci., 54, doi:10.1007/s13143-018-0028-9.

    Google Scholar 

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.

    Article  Google Scholar 

  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev. 140, 898-918, doi:10.1175/MWR-D-11-00056.1.

    Article  Google Scholar 

  • Kain, J. S. and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: the Kain-Fritsch scheme. The representation of cumulus convection in numerical models, Emanuel, K. A., and D. J. Raymond, Ed., Amer. Meteor. Soc., 246 pp.

    Google Scholar 

  • Kim, C. K., and S. S. Yum, 2012: A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulent model coupled with the weather research and forecasting model. Boundary-Layer Meteorol., 143, 481-505, doi:10.1007/s10546-012-9706-9.

    Article  Google Scholar 

  • Kim, E.-J., and S.-Y. Hong, 2010: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.

    Article  Google Scholar 

  • Koo, M.-S., S. Baek, K.-H. Seol, and K. Cho, 2017: Advances in land surface modeling of KIAPS based on the Noah land surface model. Asia-Pac. J. Atmos. Sci., 53, 361-373, doi:10.1007/s13143-017-0043-2.

    Article  Google Scholar 

  • Korain, D., J. Lewis, W. T. Thompson, C. E. Dorman, and J. A. Businger, 2001: Transition of stratus into fog along the California coast: observations and modeling. J. Atmos. Sci. 58, 1714-1731.

    Article  Google Scholar 

  • Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi:10.1175/MWR-D-16-0034.1.

    Article  Google Scholar 

  • Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations}. Mon. Wea. Rev., 136, 4819-4838.

    Article  Google Scholar 

  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective doublemoment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1.

    Article  Google Scholar 

  • Lim, K.-S. S., S.-Y. Hong, J.-H. Yoon, and J. Han, 2014: Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutions. Wea. Forecasting, 29, 1143-1154, doi:10.1175/WAF-D-13-00143.1.

    Article  Google Scholar 

  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199.

    Google Scholar 

  • Martin, G. M., M. R. Bush, A. R. Brown, A. P. Lock, and R. N. B. Smith, 2000: A new boundary-layer mixing scheme. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev. 128, 3200-3217.

    Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682, doi:10.1029/97JD00237.

    Article  Google Scholar 

  • Musson-Genon, L., 1987: Numerical simulation of a fog event with a onedimensional boundary layer model. Mon. Wea. Rev. 115, 592-607.

    Article  Google Scholar 

  • Nicholls, S., and J. D. Turton, 1986: An observational study of the structure of stratiform cloud sheets. Part II: Entrainment. Quart. J. Roy. Meteor. Soc., 112, 461-480, doi:10.1002/621qj.49711247210.

    Google Scholar 

  • Pagowski, M, I. Gultepe and P. King, 2004: Analysis and modeling of an extremely dense fog event in southern Ontario. J. Appl. Meteorol. 43, 3-16.

    Article  Google Scholar 

  • Park, R.-S., J.-H. Chae, and S.-Y. Hong, 2016: A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Wea. Rev., 114, 1219-1229, doi:10.1175/MWR-D-15-0273.1.

    Article  Google Scholar 

  • Randall, D. A., J. A. Coakley, C. W. Fairall, R. A., Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratification clouds. Bull. Amer. Meteor. Soc., 65, 1290-1301.

    Article  Google Scholar 

  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136-156, doi:10.1175/2009JAS3112.1.

    Article  Google Scholar 

  • Skamarock, W., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, D. M. Duda, X. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. note NCAR/TN-475+STR, 113pp.

    Google Scholar 

  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi: 10.1175/MWR-D-14-00116.1.

    Article  Google Scholar 

  • Steeneveld, G. J., R. J. Ronda, and A. A. M. Holtslag, 2015: The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Boundary-Layer Meteorol., 152, 265-289, doi:10.1007/s10546-014-9973-8.

    Article  Google Scholar 

  • Syed, F. S., H. Körnich, and M. Tjernström, 2012: On the fog variability over south Asia. Climate Dyn., 39, 2993-3005, doi:10.1007/s00382-012-1414-0.

    Article  Google Scholar 

  • Teixeira, J., 1999: Simulation of fog with the ECMWF prognostic cloud scheme. Quart. J. Roy. Meteor. Soc., 125, 529-552.

    Article  Google Scholar 

  • van der Velde, I. R., G. J. Steeneveld, B. G. J. Wichers Schreur, and A. A. M. Holtslag, 2010: Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon. Wea. Rev., 138, 4237-4253, doi:10.1175/2010MWR3427.1.

    Article  Google Scholar 

  • Wilson, T. H., and R. G. Fovell, 2018: Modeling the evolution and life cycle of radiative cold pools and fog. Wea. Forecasting, 33, 203-220, doi:10.1175/WAF-D-17-0109.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, EH., Lee, E., Park, R. et al. Impact of Turbulent Mixing in the Stratocumulus-Topped Boundary Layer on Numerical Weather Prediction. Asia-Pacific J Atmos Sci 54 (Suppl 1), 371–384 (2018). https://doi.org/10.1007/s13143-018-0024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0024-0

Key words

Navigation