Skip to main content
Log in

Effects of Non-orographic Gravity Wave Drag on Seasonal and Medium-range Predictions in a Global Forecast Model

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study implements the parameterizations of convective and frontal gravity wave drag (GWD) with wide phase speed spectra into a global forecast model with a model top near 0.3 hPa. The new convective GWD scheme replaces the existing one that considers only a stationary convective GW, and the frontal GWD scheme is newly introduced. When the new GWD schemes are used, the Rayleigh friction, applied above 2 hPa to mimic the effects of missing GWD, is removed. The convective (frontal) GWs are generated mainly in the Intertropical Convergence Zone and winter extratropical storm track regions (extratropics where strong baroclinicity exists). The convective and frontal GWD derived from the new schemes are significant near the model top, with maxima of ~2-4 and ~26-58 m s−1 day−1, respectively. The differences in convective GWD between the stationary and non-stationary schemes appear mainly in the tropics and summer hemisphere, where stationary GWs cannot propagate upward. The new schemes improve the seasonal representation of stratospheric wind, through changes in both the GWD and the resolved wave forcing, which is modulated by the changed large-scale wind due to the GWD. The downward influence, in response to the changed GWD, is also positive in the tropospheric fields, such as subtropical jet and planetary-scale disturbances. For the medium-range forecasts, improved skill scores on wind speed are achieved globally with the new schemes. The improvements mostly appear only in the stratosphere during the early forecast period (~3 days) but expand to the troposphere as forecast time increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bae, S. Y., S.-Y. Hong, and K. S. Lim, 2016: Coupling WRF doublemoment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model. Adv. Meteorol., 2016, 1-11, doi: 10.1155/2016/5070154.

    Article  Google Scholar 

  • Baek, S., 2017: A revised radiation package of G-packed McICA and twostream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9, 1628-1640, doi:10. 1002/2017MS000994.

    Article  Google Scholar 

  • Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61, 1805-1815.

    Article  Google Scholar 

  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83-109.

    Article  Google Scholar 

  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923-941.

    Article  Google Scholar 

  • Choi, H.-J., and H.-Y. Chun, 2011: Momentum flux spectrum of convective gravity waves. Part I: An update of a parameterization using mesoscale simulations. J. Atmos. Sci., 68, 739-759, doi:10.1175/2010-JAS3552.1.

    Google Scholar 

  • Choi, H.-J., and H.-Y. Chun, 2013: Effects of convective gravity wave drag in the Southern Hemisphere winter stratosphere. J. Atmos. Sci., 70, 2120-2136, doi:10.1175/JAS-D-12-0238.1.

    Article  Google Scholar 

  • Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res. Atmos., 120, 12445-12457, doi:10.1002/2015JD024230.

    Article  Google Scholar 

  • Choi, H.-J., S.-J. Choi, M.-S. Koo, J.-E. Kim, Y. C. Kwon, and S.-Y. Hong, 2017: Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J. Geophys. Res. Atmos., 122, 10669-10678, doi:10.1002/2017JD026696.

    Article  Google Scholar 

  • Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299-3310.

    Article  Google Scholar 

  • Chun, H.-Y., M.-D. Song, J.-W. Kim, and J.-J. Baik, 2001: Effects of gravity wave drag induced by cumulus convection on the atmospheric general circulation. J. Atmos. Sci., 58, 302-319.

    Article  Google Scholar 

  • Chun, H.-Y., H.-J. Choi, and I.-S. Song, 2008: Effects of nonlinearity on convectively forced internal gravity waves: Application to gravity wave drag parameterization. J. Atmos. Sci., 65, 557-575.

    Article  Google Scholar 

  • Chun, H.-Y., Y.-H. Kim, H.-J. Choi, and J.-Y. Kim, 2011: Influence of gravity waves in the tropical upwelling: WACCM simulations. J. Atmos. Sci., 68, 2599-2612, doi:10.1175/JAS-D-11-022.1.

    Article  Google Scholar 

  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Ofce. Quart. J. Roy. Meteor. Soc., 139, 1445-1461, doi:10.1002/qj.2054.

    Article  Google Scholar 

  • de la Cámara, A., and F. Lott, 2015: A parameterization of the gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, 2071-2078, doi:10.1002/2015GL063298.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.

    Article  Google Scholar 

  • Fritts, D. C., and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci., 49, 111-127.

    Google Scholar 

  • Han, J.-Y., S.-Y. Hong, K.-S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi:10.1175/MWR-D-15-0255.1.

    Article  Google Scholar 

  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651-678.

    Article  Google Scholar 

  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791-799.

    Article  Google Scholar 

  • Hong, S.-Y., and Coauthors, 2013: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.

    Article  Google Scholar 

  • Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) System for global weather forecasting (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0028-9.

    Google Scholar 

  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Ann. Rev. Fluid Mech., 14, 131-151.

    Article  Google Scholar 

  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5-20.

    Article  Google Scholar 

  • Jablonowski C., and D. L. Williamson, 2011: The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. Lecture Notes in Comput. Sci., 80, 381-493, doi:10.1007/978-3-642-11640-7_13.

    Article  Google Scholar 

  • Jeon, J.-H., S.-Y. Hong, H.-Y. Chun, and I.-S. Song, 2010: Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pac. J. Atmos. Sci., 46, 1-10, doi:10.1007/s13143-010-0001-8.

    Article  Google Scholar 

  • Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4, 335-342.

    Article  Google Scholar 

  • Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 1019-1038.

    Article  Google Scholar 

  • Kang, M.-J., H.-Y. Chun, and Y.-H. Kim, 2017: Momentum flux of convective gravity waves derived from an offline gravity wave parameterization. Part I: Spatiotemporal variations at source level. J. Atmos. Sci., 74, 3167-3189, doi:10.1175/JAS-D-17-0053.1.

    Google Scholar 

  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.-Ocean, 41, 65-98.

    Article  Google Scholar 

  • Koo, M.-S., S. Baek, K.-H. Seol, and K. Cho, 2017: Advances in land modeling of KIAPS based on the Noah Land Surface Model. Asia-Pac. J. Atmos. Sci., 53, 361-373, doi:10.1007/s13143-017-0043-2.

    Article  Google Scholar 

  • Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi:10.1175/MWR-D-16-0034.1.

    Article  Google Scholar 

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9707-9714.

    Article  Google Scholar 

  • Manzini, E., and N. A. McFarlane, 1998: The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model. J. Geophys. Res., 103, 31523-31539.

    Article  Google Scholar 

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775-1800.

    Article  Google Scholar 

  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169-171.

    Article  Google Scholar 

  • Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Climate, 23, 5905-5926, doi:10.1175/2010JCLI3490.1.

    Article  Google Scholar 

  • Park, R.-S., J.-H. Chae, and S.-Y. Hong, 2016: A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Wea. Rev., 144, 1219-1229, doi:10.1175/MWR-D-15-0273.1.

    Article  Google Scholar 

  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136-156, doi:10.1175/2009JAS3112.1.

    Article  Google Scholar 

  • Richter, J. H., A. Solomon., and J. T. Bacmeister, 2014: Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst., 6, 357-383, doi:10.1002/2013MS000303.

    Article  Google Scholar 

  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667-682.

    Article  Google Scholar 

  • Shaw, T. A., and T. G. Shepherd, 2007: Angular momentum conservation and gravity wave drag parameterization: Implications for climate models. J. Atmos. Sci., 64, 190-203.

    Article  Google Scholar 

  • Shepherd, T. G., and T. A. Shaw, 2004: The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J. Atmos. Sci., 61, 2899-2908.

    Article  Google Scholar 

  • Shepherd, T. G., K. Semeniuk, and J. N. Koshyk, 1996: Sponge layer feedbacks in middle-atmosphere models. J. Geophys. Res., 101, 23447-23464.

    Article  Google Scholar 

  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1.

    Article  Google Scholar 

  • Song, I.-S., and H.-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62, 107-124.

    Google Scholar 

  • Song, I.-S., and H.-Y. Chun, 2008: A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci., 65, 1204-1224.

    Article  Google Scholar 

  • Song, I.-S., H.-Y. Chun, R. R. Garcia, and B. A. Boville, 2007: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part II: Impacts in a GCM (WACCM). J. Atmos. Sci., 64, 2286-2308.

    Google Scholar 

  • Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 1837-1857.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Joo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, HJ., Han, JY., Koo, MS. et al. Effects of Non-orographic Gravity Wave Drag on Seasonal and Medium-range Predictions in a Global Forecast Model. Asia-Pacific J Atmos Sci 54 (Suppl 1), 385–402 (2018). https://doi.org/10.1007/s13143-018-0023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0023-1

Key words

Navigation