Skip to main content
Log in

Structure of Eigenvalues in the Advection-Diffusion Equation by the Spectral Element Method on a Cubed-Sphere Grid

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

To fundamentally understand discretized equations and differential operators, this study investigates the eigenvalues of the spherical gradient matrix and spherical Laplacian matrix discretized by the spectral element method (SEM) on the cubed-sphere grid (CS) for solid-body rotation. The gradient matrix with prescribed wind for the solid-body rotation has small positive real numbers in the eigenvalues, which implies that the solutions of the advection equation for solid-body rotation can be unstable and distorted. However, the unstable model can be effectively controlled by the Laplacian matrix, and all eigenvalues of the Laplacian matrix are aligned along the negative part of the real axis. The maximum eigenvalues of the gradient matrix and Laplacian matrix exhibit the characteristic of a linear function of the resolution, which is important to determine the upper limit of the time-step size for stable time integration. This study suggests suitable e-folding time scale of the diffusion using the 6th order for applications of the advection-diffusion equation. Regarding the characteristics of the eigenvalues, the setting of the stable time step is discussed. A method to implement the diffusion operators in the third-order Runge-Kutta time integration scheme in the advection-diffusion model is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cheong, H.-B., and H.-G. Kang, 2015: Eigensolutions of the spherical Laplacian for the cubed-sphere and icosahedral-hexagonal grids. Quart. J. Roy. Meteor. Soc., 141, 3383-3398, doi:10.1002/qj.2620.

    Article  Google Scholar 

  • Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.

    Article  Google Scholar 

  • Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717-2731, doi:10.5194/gmd-7-2717-2014.

    Article  Google Scholar 

  • Dennis, J., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor, and P. H. Worley, 2011: CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int. J. High Perform Comput. Appl., 26, 74-89, doi:10.1177/109434-2011428142.

    Article  Google Scholar 

  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, 465 pp.

    Book  Google Scholar 

  • Flyer, N., and G. B. Wright, 2007: Transport schemes on a sphere using radial basis function. J. Comput. Phys., 226, 1059-1084, doi:10.1016/j.jcp.2007.05.009.

    Article  Google Scholar 

  • Guba, O., M. Taylor, and A. St-Cyr, 2014: Optimization-based limiters for the spectral element method. J. Comput. Phys., 267, 176-195, doi: 10.1016/j.jcp.2014.02.029.

    Article  Google Scholar 

  • Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0028-9.

    Google Scholar 

  • Kajishima T., and K. Taira, 2017: Computational Fluid Dynamics: Incompressible Turbulent Flows. Springer International Publishing, 358 pp.

    Book  Google Scholar 

  • Lauritzen, P., C. Jablonowski, M.A. Taylor, and R.D. Nair, 2011: Numerical Techniques for Global Atmospheric Models, Springer, 577 pp.

    Book  Google Scholar 

  • Melvin, T., A. Staniforth, and J. Thuburn, 2012: Dispersion analysis of the spectral element method. Quart. J. Roy. Meteor. Soc., 138, 1934-1947, doi:10.1002/qj.1906.

    Article  Google Scholar 

  • Michoski, C., A. Alexanderian, C. Paillet, E. J. Kubatko, and C. Dawson, 2017: Stability of Nonlinear Convection-Diffusion-Reaction Systems in Discontinuous Galerkin Methods. J. Sci. Comput., 70, 516-550, doi:10.1007/s10915-016-0256-z.

    Article  Google Scholar 

  • Nair, R. D., S. J. Thomas, and R. D. Loft, 2005: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev., 133, 814-828.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note TN-475+STR, 113 pp.

    Google Scholar 

  • Song, H.-J., I.-H. Kwon, and J. Kim, 2017: Characteristics of a spectral inverse of the Laplacian using spherical harmonic functions on a cubedsphere grid for background error covariance modeling. Mon. Wea. Rev., 145, 307-322, doi:10.1175/MWR-D-16-0134.1.

    Article  Google Scholar 

  • Taylor, M., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92-108.

    Article  Google Scholar 

  • Ullrich, P.A., 2014: Understanding the treatment of waves in atmospheric models. Part I: The shortest resolved waves of the 1D linearized shallow-water equations. Quart. J. Roy. Meteor. Soc., 140, 1426-1440, doi: 10.1002/qj.2226.

    Google Scholar 

  • Weller, H., J. Thuburn, and C. J. Cotter, 2012: Computational modes and grid imprinting on five quasi-uniform spherical C grids. Mon. Wea. Rev., 140, 2734-2755, doi:10.1175/MWR-D-11-00193.1.

    Article  Google Scholar 

  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211-224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, SJ. Structure of Eigenvalues in the Advection-Diffusion Equation by the Spectral Element Method on a Cubed-Sphere Grid. Asia-Pacific J Atmos Sci 54 (Suppl 1), 293–301 (2018). https://doi.org/10.1007/s13143-018-0020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0020-4

Key words

Navigation