Skip to main content
Log in

Impacts of Shallow Convection Processes on a Simulated Boreal Summer Climatology in a Global Atmospheric Model

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study investigates the impacts of shallow convection schemes on a simulated seasonal climatology in the Global and Regional Integrated Model system (GRIMs). The eddy-diffusivity scheme of Tiedtke (TDK) is evaluated, focusing on the dependency upon deep convection schemes. Drying and warming near the top of the planetary boundary layer (PBL) and opposing effects above are observed. The height of PBL is reduced due to the increase of thermal stability near the PBL top. The weakened PBL turbulence is partly compensated with the increased downward solar radiation due to the reduction of low clouds. These effects are pronounced over the oceans, which leads to the modulation of tropical precipitation. It is found that the original TDK scheme shows similar behavior regardless of the choice of deep convection schemes. A revised TDK scheme that explicitly couples the PBL and shallow convection processes is proposed and evaluated. The proposed scheme generally improves the simulated climatology over the results with the original TDK scheme, along with further improvement in the case of the revised deep convection scheme. Our results indicate that the role of the shallow convection scheme needs to be carefully examined to improve the performance of atmospheric models, with a focus on modulated PBL and deep convection processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-691.

    Google Scholar 

  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. A. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 9655-9676, doi:10.1175/JCLI-D-13-00075.1.

    Article  Google Scholar 

  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22, 3422-3448.

    Article  Google Scholar 

  • Byun, Y. H., and S.-Y. Hong, 2004: Impact of boundary-layer processes on simulated tropical rainfall. J. Climate, 17, 4032-4044.

    Article  Google Scholar 

  • Gordon, C. T., A. Rosati, and R. Gudgel, 2000: Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate, 13, 2239-2260.

    Article  Google Scholar 

  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787.

    Article  Google Scholar 

  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520-533, doi:10.1175/WAF-D-10-05038.1.

    Article  Google Scholar 

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth's energy balance: Global analysis. J. Climate, 5, 1281-1304.

    Article  Google Scholar 

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.

    Article  Google Scholar 

  • Hong, S.-Y., and Coauthors, 2013: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.

    Article  Google Scholar 

  • Iacobellis, S. F., and R. C. J. Somerville, 2000: Implications of microphysics for cloud-radiation parameterizations: Lessons from TOGA COARE. J. Atmos. Sci., 57, 161-183.

    Article  Google Scholar 

  • Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Mon. Wea. Rev., 131, 2765-2778.

    Article  Google Scholar 

  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397-2418.

    Article  Google Scholar 

  • Juang, H.-M. H., and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122, 3-26.

    Article  Google Scholar 

  • Juang, H.-M, S.-Y. Hong, and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc., 78, 2125-2143.

    Article  Google Scholar 

  • Kanamitsu, M., and Coauthors, 2002a: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 1019-1037.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002b: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643.

    Article  Google Scholar 

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587-1606.

    Article  Google Scholar 

  • Li, H., M. Kanamitsu, and S.-Y. Hong, 2012: California reanalysis downscaling at 10 km using an ocean-atmosphere coupled regional model system. J. Geophys. Res., 117, D12118, doi:10.1029/2011JD-017372.

    Google Scholar 

  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical pacific circulation: a coupled ocean-atmosphere GCM study. J. Climate, 9, 1635-1645.

    Article  Google Scholar 

  • Norris, J. R., 1999: On trends and possible artifacts in global ocean cloud cover between 1952 and 1995. J. Climate, 12, 1864-1870.

    Article  Google Scholar 

  • Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, 43 pp.

  • Park, H., and S.-Y. Hong, 2007: An evaluation of a mass-flux cumulus parameterization scheme in the KMA global forecast system. J. Meteor. Soc. Japan, 85, 151-168.

    Article  Google Scholar 

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261-2287.

    Article  Google Scholar 

  • Stensrud, D. J., 2007: Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, 459 pp.

    Book  Google Scholar 

  • Slingo, J., M. Blackburn, A. Betts, R. Brugge, K. Hodges, B. Hoskins, M. Miller, L. Steenman-Clark, and J. Thuburn, 1994: Mean climate and transience in the tropics of the UGAMP GCM: Sensitivity to convective parametrization. Quart. J. Roy. Meteor. Soc., 120, 881-922.

    Article  Google Scholar 

  • Tiedtke, M., W. A. Heckley, and J. Slingo, 1988: Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses. Quart. J. Roy. Meteor. Soc., 114, 639-664.

    Article  Google Scholar 

  • Wu, C.-M., B. Stevens, and A. Arakawa, 2009: What Controls the Transition from Shallow to Deep Convection? J. Atmos. Sci., 66, 1793-1806.

    Article  Google Scholar 

  • Xie, P., and P. A. Arkin, 1997: Global Precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558.

    Article  Google Scholar 

  • Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM southern great plains site. J. Atmos. Sci., 67, 2943-2959, doi:10.1175/2010JAS3366.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-You Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, SY., Jang, J. Impacts of Shallow Convection Processes on a Simulated Boreal Summer Climatology in a Global Atmospheric Model. Asia-Pacific J Atmos Sci 54 (Suppl 1), 361–370 (2018). https://doi.org/10.1007/s13143-018-0013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0013-3

Key words

Navigation