Nuclear Medicine and Molecular Imaging

, Volume 52, Issue 2, pp 91–98 | Cite as

CT Radiomics in Thoracic Oncology: Technique and Clinical Applications

  • Geewon Lee
  • So Hyeon Bak
  • Ho Yun Lee


Precision medicine offers better treatment options and improved survival for cancer patients based on individual variability. As the success of precision medicine depends on robust biomarkers, the requirement for improved imaging biomarkers that reflect tumor biology has grown exponentially. Radiomics, the field of study in which high-throughput data are generated and large amounts of advanced quantitative features are extracted from medical images, has shown great potential as a source of quantitative biomarkers in the field of oncology. Radiomics provides quantitative information about the morphology, texture, and intratumoral heterogeneity of the tumor itself as well as features related to pulmonary function. Hence, radiomics data can be used to build descriptive and predictive clinical models that relate imaging characteristics to tumor biology phenotypes. In this review, we describe the workflow of CT radiomics, types of CT radiomics, and its clinical application in thoracic oncology.


Computed tomography Lung cancer Image processing Biomarkers 


Compliance with Ethical Standards

Conflict of Interest

Geewon Lee, So Hyeon Bak, and Ho Yun Lee declare that they have no conflict of interest. This research was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare (HI17C0086) and by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP; Ministry of Science, ICT, & Future Planning) (No. NRF-2016R1A2B4013046 and NRF-2017M2A2A7A02018568).

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Requirement to obtain informed consent was waived.


  1. 1.
    The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.Google Scholar
  2. 2.
    The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.Google Scholar
  3. 3.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366:489–91.CrossRefPubMedGoogle Scholar
  5. 5.
    Chong Y, Kim JH, Lee HY, Ahn YC, Lee KS, Ahn MJ, et al. Quantitative CT variables enabling response prediction in neoadjuvant therapy with EGFR-TKIs: are they different from those in neoadjuvant concurrent chemoradiotherapy? PLoS One. 2014;9:e88598.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Divine MR, Katiyar P, Kohlhofer U, Quintanilla-Martinez L, Pichler BJ, Disselhorst JA. A population-based Gaussian mixture model incorporating 18F-FDG PET and diffusion-weighted MRI quantifies tumor tissue classes. J Nucl Med. 2016;57:473–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Son JY, Lee HY, Kim JH, Han J, Jeong JY, Lee KS, et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: the added value of using iodine mapping. Eur Radiol. 2016;26:43–54.CrossRefPubMedGoogle Scholar
  8. 8.
    Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 2012;22:796–802.CrossRefPubMedGoogle Scholar
  9. 9.
    McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–28.CrossRefPubMedGoogle Scholar
  10. 10.
    O'Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res. 2015;21:249–57.CrossRefPubMedGoogle Scholar
  11. 11.
    Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56:1667–73.CrossRefPubMedGoogle Scholar
  12. 12.
    Rios Velazquez E, Aerts HJ, Gu Y, Goldgof DB, De Ruysscher D, Dekker A, et al. A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen. Radiother Oncol. 2012;105:167–73.CrossRefPubMedGoogle Scholar
  13. 13.
    Doel T, Gavaghan DJ, Grau V. Review of automatic pulmonary lobe segmentation methods from CT. Comput Med Imaging Graph. 2015;40:13–29.CrossRefPubMedGoogle Scholar
  14. 14.
    Tschirren J, Hoffman EA, McLennan G, Sonka M. Segmentation and quantitative analysis of intrathoracic airway trees from computed tomography images. Proc Am Thorac Soc. 2005;2:484–7. 503-4CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ley-Zaporozhan J, Kauczor HU. Imaging of airways: chronic obstructive pulmonary disease. Radiol Clin N Am. 2009;47:331–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Gu S, Wang Z, Siegfried JM, Wilson D, Bigbee WL, Pu J. Automated lobe-based airway labeling. Int J Biomed Imaging. 2012;2012:382806.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ko JP, Suh J, Ibidapo O, Escalon JG, Li J, Pass H, et al. Lung Adenocarcinoma: correlation of quantitative CT findings with pathologic findings. Radiology. 2016;280:931–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Park J, Kobayashi Y, Urayama KY, Yamaura H, Yatabe Y, Hida T. Imaging characteristics of driver mutations in EGFR, KRAS, and ALK among treatment-naive patients with advanced lung Adenocarcinoma. PLoS One. 2016;11:e0161081.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Messiou C, Orton M, Ang JE, Collins DJ, Morgan VA, Mears D, et al. Advanced solid tumors treated with cediranib: comparison of dynamic contrast-enhanced MR imaging and CT as markers of vascular activity. Radiology. 2012;265:426–36.CrossRefPubMedGoogle Scholar
  21. 21.
    Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative Radiomic biomarkers. Sci Rep. 2015;5:13087.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee G, Lee HY, Park H, Schiebler ML, van Beek EJ, Ohno Y, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art. Eur J Radiol. 2017;86:297–307.CrossRefPubMedGoogle Scholar
  23. 23.
    de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M. Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology. 2010;255:199–206.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee HY, Jeong JY, Lee KS, Kim HJ, Han J, Kim BT, et al. Solitary pulmonary nodular lung adenocarcinoma: correlation of histopathologic scoring and patient survival with imaging biomarkers. Radiology. 2012;264:884–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang J, Zhang L, Fave XJ, Fried DV, Stingo FC, Ng CS, et al. Uncertainty analysis of quantitative imaging features extracted from contrast-enhanced CT in lung tumors. Comput Med Imaging Graph. 2016;48:1–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Al-Kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng. 2008;55:1822–30.CrossRefPubMedGoogle Scholar
  27. 27.
    Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.CrossRefPubMedGoogle Scholar
  28. 28.
    Fried DV, Tucker SL, Zhou S, Liao Z, Mawlawi O, Ibbott G, et al. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;90:834–42.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging. 2010;10:137–43.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gevaert O, Xu J, Hoang CD, Leung AN, Xu Y, Quon A, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. Radiology. 2012;264:387–96.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wu J, Gensheimer MF, Dong X, Rubin DL, Napel S, Diehn M, et al. Robust intratumor partitioning to identify high-risk subregions in lung cancer: a pilot study. Int J Radiat Oncol Biol Phys. 2016;95:1504–12.Google Scholar
  32. 32.
    Lennon FE, Cianci GC, Cipriani NA, Hensing TA, Zhang HJ, Chen CT, et al. Lung cancer-a fractal viewpoint. Nat Rev Clin Oncol. 2015;12:664–75.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang C, Subashi E, Yin FF, Chang Z. Dynamic fractal signature dissimilarity analysis for therapeutic response assessment using dynamic contrast-enhanced MRI. Med Phys. 2016;43:1335–47.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dournes G, Laurent F. Airway remodelling in asthma and COPD: findings, similarities, and differences using quantitative CT. Pulm Med. 2012;2012:670414.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Choi S, Hoffman EA, Wenzel SE, Castro M, Fain S, Jarjour N, et al. Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. J Allergy Clin Immunol. 2017;140:690-700.e8.Google Scholar
  36. 36.
    Eguchi T, Yoshizawa A, Kawakami S, Kumeda H, Umesaki T, Agatsuma H, et al. Tumor size and computed tomography attenuation of pulmonary pure ground-glass nodules are useful for predicting pathological invasiveness. PLoS One. 2014;9:e97867.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lee HY, Choi YL, Lee KS, Han J, Zo JI, Shim YM, et al. Pure ground-glass opacity neoplastic lung nodules: histopathology, imaging, and management. AJR Am J Roentgenol. 2014;202:W224–33.CrossRefPubMedGoogle Scholar
  38. 38.
    Ikeda K, Awai K, Mori T, Kawanaka K, Yamashita Y, Nomori H. Differential diagnosis of ground-glass opacity nodules: CT number analysis by three-dimensional computerized quantification. Chest. 2007;132:984–90.CrossRefPubMedGoogle Scholar
  39. 39.
    Bak SH, Lee HY, Kim JH, Um SW, Kwon OJ, Han J, et al. Quantitative CT scanning analysis of pure ground-glass opacity nodules predicts further CT scanning change. Chest. 2016;149:180–91.CrossRefPubMedGoogle Scholar
  40. 40.
    Nia HT, Liu H, Seano G, Datta M, Jones D, Rahbari N, et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng. 2016;1:1–11.CrossRefGoogle Scholar
  41. 41.
    Jeong CJ, Lee HY, Han J, Jeong JY, Lee KS, Choi YL, et al. Role of imaging biomarkers in predicting anaplastic lymphoma kinase-positive lung adenocarcinoma. Clin Nucl Med. 2015;40:e34–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Yoon HJ, Sohn I, Cho JH, Lee HY, Kim JH, Choi YL, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung Adenocarcinoma using a Radiomics approach. Medicine (Baltimore). 2015;94:e1753.CrossRefGoogle Scholar
  43. 43.
    Papageorgiou CV, Antoniou D, Kaltsakas G, Koulouris NG. Role of quantitative CT in predicting postoperative FEV1 and chronic dyspnea in patients undergoing lung resection. Multidiscip Respir Med. 2010;5:188–93.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Poonyagariyagorn H, Mazzone PJ. Lung cancer: preoperative pulmonary evaluation of the lung resection candidate. Semin Respir Crit Care Med. 2008;29:271–84.CrossRefPubMedGoogle Scholar
  45. 45.
    Yabuuchi H, Kawanami S, Kamitani T, Yonezawa M, Yamasaki Y, Yamanouchi T, et al. Prediction of post-operative pulmonary function after lobectomy for primary lung cancer: a comparison among counting method, effective lobar volume, and lobar collapsibility using inspiratory/expiratory CT. Eur J Radiol. 2016;85:1956–62.CrossRefPubMedGoogle Scholar
  46. 46.
    Chae EJ, Kim N, Seo JB, Park JY, Song JW, Lee HJ, et al. Prediction of postoperative lung function in patients undergoing lung resection: dual-energy perfusion computed tomography versus perfusion scintigraphy. Investig Radiol. 2013;48:622–7.CrossRefGoogle Scholar
  47. 47.
    Ueda K, Murakami J, Sano F, Hayashi M, Kobayashi T, Kunihiro Y, et al. Assessment of volume reduction effect after lung lobectomy for cancer. J Surg Res. 2015;197:176–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Wu MT, Chang JM, Chiang AA, Lu JY, Hsu HK, Hsu WH, et al. Use of quantitative CT to predict postoperative lung function in patients with lung cancer. Radiology. 1994;191:257–62.CrossRefPubMedGoogle Scholar
  49. 49.
    Moloney F, McWilliams S, Crush L, Laughlin PD, Kenneddy M, Henry M, et al. CT densitometry as a predictor of pulmonary function in lung cancer patients. Open Respir Med J. 2012;6:139–44.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ohno Y, Koyama H, Nogami M, Takenaka D, Onishi Y, Matsumoto K, et al. State-of-the-art radiological techniques improve the assessment of postoperative lung function in patients with non-small cell lung cancer. Eur J Radiol. 2011;77:97–104.CrossRefPubMedGoogle Scholar
  51. 51.
    Wu MT, Pan HB, Chiang AA, Hsu HK, Chang HC, Peng NJ, et al. Prediction of postoperative lung function in patients with lung cancer: comparison of quantitative CT with perfusion scintigraphy. AJR Am J Roentgenol. 2002;178:667–72.CrossRefPubMedGoogle Scholar
  52. 52.
    Dai J, Yang P, Cox A, Jiang G. Lung cancer and chronic obstructive pulmonary disease: from a clinical perspective. Oncotarget. 2017;8:18513–24.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lapointe A, Bahig H, Blais D, Bouchard H, Filion E, Carrier JF, et al. Assessing lung function using contrast-enhanced dual energy computed tomography for potential applications in radiation therapy. Med Phys. 2017.
  54. 54.
    Choe J, Lee SM, Chae EJ, Lee SM, Kim YH, Kim N, et al. Evaluation of postoperative lung volume and perfusion changes by dual-energy computed tomography in patients with lung cancer. Eur J Radiol. 2017;90:166–73.CrossRefPubMedGoogle Scholar
  55. 55.
    Chiyo M, Sekine Y, Iwata T, Tatsumi K, Yasufuku K, Iyoda A, et al. Impact of interstitial lung disease on surgical morbidity and mortality for lung cancer: analyses of short-term and long-term outcomes. J Thorac Cardiovasc Surg. 2003;126:1141–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Ueda K, Kaneda Y, Sudoh M, Mitsutaka J, Tanaka N, Suga K, et al. Role of quantitative CT in predicting hypoxemia and complications after lung lobectomy for cancer, with special reference to area of emphysema. Chest. 2005;128:3500–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Kaplan T, Atac GK, Gunal N, Kocer B, Alhan A, Cubuk S, et al. Quantative computerized tomography assessment of lung density as a predictor of postoperative pulmonary morbidity in patients with lung cancer. J Thorac Dis. 2015;7:1391–7.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Mimae T, Suzuki K, Tsuboi M, Ikeda N, Takamochi K, Aokage K, et al. Severity of lung fibrosis affects early surgical outcomes of lung cancer among patients with combined pulmonary fibrosis and emphysema. Medicine (Baltimore). 2016;95:e4314.CrossRefGoogle Scholar
  59. 59.
    Humphries SM, Yagihashi K, Huckleberry J, Rho BH, Schroeder JD, Strand M, et al. Idiopathic pulmonary fibrosis: data-driven textural analysis of extent of fibrosis at baseline and 15-month follow-up. Radiology. 2017;285:270-278. Google Scholar
  60. 60.
    Maldonado F, Moua T, Rajagopalan S, Karwoski RA, Raghunath S, Decker PA, et al. Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J. 2014;43:204–12.CrossRefPubMedGoogle Scholar
  61. 61.
    Moon JW, Bae JP, Lee HY, Kim N, Chung MP, Park HY, et al. Perfusion- and pattern-based quantitative CT indexes using contrast-enhanced dual-energy computed tomography in diffuse interstitial lung disease: relationships with physiologic impairment and prediction of prognosis. Eur Radiol. 2016;26:1368–77.CrossRefPubMedGoogle Scholar
  62. 62.
    Park HJ, Lee SM, Song JW, Lee SM, Oh SY, Kim N, et al. Texture-based automated quantitative assessment of regional patterns on initial CT in patients with idiopathic pulmonary fibrosis: relationship to decline in forced vital capacity. AJR Am J Roentgenol. 2016;207:976–83.CrossRefPubMedGoogle Scholar
  63. 63.
    Yoon RG, Seo JB, Kim N, Lee HJ, Lee SM, Lee YK, et al. Quantitative assessment of change in regional disease patterns on serial HRCT of fibrotic interstitial pneumonia with texture-based automated quantification system. Eur Radiol. 2013;23:692–701.PubMedGoogle Scholar
  64. 64.
    Balagurunathan Y, Gu Y, Wang H, Kumar V, Grove O, Hawkins S, et al. Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol. 2014;7:72–87.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, et al. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27:805–23.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Antunes J, Viswanath S, Rusu M, Valls L, Hoimes C, Avril N, et al. Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study. Transl Oncol. 2016;9:155–62.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging. 2007;26:405–21.CrossRefPubMedGoogle Scholar

Copyright information

© Korean Society of Nuclear Medicine 2017

Authors and Affiliations

  1. 1.Department of Radiology and Center for Imaging Science, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
  2. 2.Department of Radiology and Medical Research InstitutePusan National University Hospital, Pusan National University School of MedicineBusanSouth Korea
  3. 3.Department of RadiologyKangwon National University HospitalChuncheonSouth Korea

Personalised recommendations