Journal für Mathematik-Didaktik

, Volume 39, Issue 1, pp 43–67 | Cite as

Direkte und indirekte Einflüsse der Raumvorstellung auf die Rechenleistungen am Ende der Grundschulzeit

Originalarbeit/Original Article
  • 61 Downloads

Zusammenfassung

Zahlen erscheinen uns als eine Entität, das dekadische Stellenwertsystem zu verstehen und mit Zahlen zu operieren ist jedoch ein hochkomplexes Kognitionskonstrukt mit unterschiedlichsten Einflussparametern. In den letzten zwei Jahrzehnten hat die Entwicklungs- und Neuropsychologie unser Verständnis zur Verarbeitung von Zahlen sowie der damit verbundenen Rechenleistung maßgeblich erweitert. Unter anderem wurden sogenannte basisnumerische Fähigkeiten identifiziert, die zum kompetenten Rechnen notwendig sind. Einige dieser basisnumerischen Fähigkeiten weisen dabei starke räumliche Bezüge auf. Damit drängt sich die aus didaktischer Sicht interessante Frage auf, ob Raumvorstellung an der Vorhersage von Rechenleistung beteiligt ist.

Dieser Fragestellung wurde anhand von zwei Forschungsfragen mit 102 Kindern zwischen neun und elf Jahren nachgegangen: (a) Kann die Raumvorstellung als Einflussfaktor für Rechenleistung angenommen werden? (b) Besteht ein direkter Einfluss von Raumvorstellung auf die Rechenleistung oder wirkt die Raumvorstellung indirekt über die basisnumerischen Fertigkeiten?

Die Ergebnisse zeigen, dass die Raumvorstellung zwar direkt und signifikant an der Vorhersage der Rechenleistung beteiligt ist, dieser Einfluss jedoch hypothesenkonform durch die Basisnumerik mediiert wird.

Schlüsselwörter

Basisnumerische Fähigkeiten Raumvorstellung Rechenleistung Mentaler Zahlenstrahl 

Direct and Indirect Influences of Spatial Abilities on Mental Arithmetic Performance at the End of Primary School

Abstract

Numbers may appear as one integrated entity. However, to understand the decimal system and to operate with numbers is extremely sophisticated and is subject to a multitude of influencing factors. In the last twenty years, developmental psychology and neuropsychology have contributed to our understanding of the genesis of our number sense. Researchers located responsible brain areas and identified so called basic number processing skills.

As many of these basic number processing skills have their origin in the conception of space, it makes sense to examine the question whether spatial ability can explain individual differences in mental arithmetic performance.

This study examines the mental arithmetic performance, basic number processing skills, and spatial abilities of 102 children aged between nine and eleven years to answer the following two research questions: (a) to what extent can individual differences in mental arithmetic performance be explained by spatial abilities? (b) Is there only a direct influence of spatial ability on mental arithmetic performance or are there also indirect effects mediated by basic number processing skills?

On the one hand, the results show that spatial abilities can explain individual differences in mental arithmetic performance directly. On the other hand, we found that in line with our hypotheses these influences of spatial abilities on mental arithmetic performance were mediated by basic number processing skills.

Keywords

Basic number processing skills Spatial abilities Mental arithmetic performance Mental number line 

MESC Codes

C80 D20 F20 F30 G20 

Literatur

  1. Affolter, M., Bellusci, S., Itoh, N., Shilo, B., Thiery, J. P., & Werb, Z. (2003). Tube or not tube. Remodeling epithelial tissues by branching morphogenesis. Developmental Cell, 4, 11–18.CrossRefGoogle Scholar
  2. Alloway, T. P., & Passolunghi, M. C. (2011). The relationship between working memory, IQ, and mathematical skills in children. Learning and Individual Differences, 21(1), 133–137.CrossRefGoogle Scholar
  3. Ashcraft, M. H. (1995). Cognitive psychology and simple arithmetic: a review and summary of the new directions. Mathematical Cognition, 1, 3–34.Google Scholar
  4. Baddeley, A. D. (1986). Working memory. Oxford: Clarendon.Google Scholar
  5. Baddeley, A. D. (2000). The episodic buffer: a new component in working memory? Trends in Cognitive Sciences, 4, 417–423.CrossRefGoogle Scholar
  6. Burte, H., Gardony, A. L., Allyson, H., & Holly, T. (2017). Think3d!: improving mathematics learning through embodied spatial training. Cognitive Research: Principles and Implications, 2, 13.  https://doi.org/10.1186/s41235-017-0052-9.Google Scholar
  7. Butterworth, B. (1999). The mathematical brain. London: MacMillan.Google Scholar
  8. Carniel, D., Knapstein, K., & Spiegel, H. (2002). Räumliches Denken fördern. Erprobte Unterrichtseinheiten und Werkstätten zur Symmetrie und Raumgeometrie. Donauwörth: Auer.Google Scholar
  9. Casey, M., Nuttal, R. L., & Pezzaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based Items. Journal for Research in Mathematics Education, 32(1), 28–57.CrossRefGoogle Scholar
  10. Cheng, Y.-L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11.CrossRefGoogle Scholar
  11. Cohen Kadosh, R., Henik, A., Rubinsten, O., Mohr, H., Dori, H., van de Ven, V., Zorzi, M., Hendler, T., Goebel, R., & Linden, D. E. J. (2005). Are numbers special? The comparison system of the human brain investigated by fMRI. Neuropsychologia, 43, 1238–1248.CrossRefGoogle Scholar
  12. Cornoldi, C., & Vecchi, T. (2003). Visuo-spatial working memory and individual differences. Hove: Psychology Press.Google Scholar
  13. Dackermann, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H.-C. (2013). Walk the number line – an embodied training of numerical concepts. Trends in Neuroscience and Education, 2, 74–84.CrossRefGoogle Scholar
  14. Dark, V. J., & Benbow, C. P. (1991). Differential enhancement of working memory with mathematical versus verbal precocity. Journal of Educational Psychology, 83(1), 48.CrossRefGoogle Scholar
  15. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.CrossRefGoogle Scholar
  16. Dehaene, S. (1999). Der Zahlensinn oder warum wir rechnen können. Berlin: Birkhäuser.CrossRefGoogle Scholar
  17. Dehaene, S., & Cohen, L. (1995). Toward an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.Google Scholar
  18. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.CrossRefGoogle Scholar
  19. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.CrossRefGoogle Scholar
  20. van Dijck, J.-P., Ginsburg, V., Girelli, L., & Gevers, W. (2015). Linking numbers to space: from the mental number line towards a hybrid account. In R. Cohen Kadosh & A. Dowker (Hrsg.), The Oxford handbook of numerical cognition (S. 89–105). Oxford: Oxford University Press.Google Scholar
  21. Dornheim, D. (2008). Prädiktion von Rechenleistung und Rechenschwäche: der Beitrag von Zahlen-Vorwissen und allgemein-kognitiven Fähigkeiten. Berlin: Logos.Google Scholar
  22. Ehmke, T., & Jude, N. (2010). Soziale Herkunft und Kompetenzerwerb. In E. Klieme, C. Artelt, J. Hartig, N. Jude, O. Köller, M. Prenzel, W. Schneider & P. Stanat (Hrsg.), PISA 2009: Bilanz nach einem Jahrzehnt (S. 231–254). Münster: Waxmann.Google Scholar
  23. Ekstrom, R., French, J., Harman, H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. New Jersey: Educational Testing Service.Google Scholar
  24. Eliot, J., & Smith, M. I. (1983). An international directory of spatial tests. Windsor: NFER-Nelson.Google Scholar
  25. Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In J. I. D. Campbell (Hrsg.), Handbook of mathematical cognition (S. 43–54). Hove: Psychology Press.Google Scholar
  26. Fischer, U., Moeller, K., Class, F., Huber, S., Cress, U., & Nuerk, H.-C. (2016). Dancing with the SNARC: measuring spatial-numerical associations on a digital dance mat. Canadian Journal of Experimental Psychology, 70(4), 306–315.CrossRefGoogle Scholar
  27. Franke, M. (2007). Didaktik der Geometrie in der Grundschule – Mathematik Primar und Sekundarstufe (2. Aufl.). München: Spektrum Verlag.Google Scholar
  28. Franke, M., & Reinhold, S. (2016). Didaktik der Geometrie in der Grundschule. Berlin, Heidelberg: Springer.Google Scholar
  29. Gardner, H. (1991). Abschied vom IQ – Die Rahmentheorie der vielfachen Intelligenzen. Stuttgart: Klett-Cotta.Google Scholar
  30. Gathercole, S. E., & Pickering, S. J. (2000). Working memory deficits in children with low achievements in the national curriculum at 7 years of age. British Journal of Educational Psychology, 70(2), 177–194.CrossRefGoogle Scholar
  31. Geary, D. C., & Burlingham-Dubree, M. (1989). External validation of the strategy choice model for addition. Journal of Experimental Child Psychology, 47, 175–192.CrossRefGoogle Scholar
  32. Geary, D. C., Brown, S. C., & Samaranayake, V. A. (1991). Cognitive addition: a short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental psychology, 27(5), 787.CrossRefGoogle Scholar
  33. Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child development, 78(4), 1343–1359.CrossRefGoogle Scholar
  34. Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. (2005). Automatic response activation of implicit spatial information: evidence from the SNARC effect. Acta Psychologica, 122, 221–233.CrossRefGoogle Scholar
  35. Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: a review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42(4), 543–565.CrossRefGoogle Scholar
  36. Grassmann, M., Eichler, K.-P., Mirwald, E., & Nitsch, B. (2010). Mathematikunterricht. Kompetent im Unterricht der Grundschule. Baltmannsweiler: Schneider Hohengehren.Google Scholar
  37. Greiff, S., & Heene, M. (2017). Why psychological assessment needs to start worrying about model fit. European Journal of Psychological Assessment, 33, 313–317.CrossRefGoogle Scholar
  38. Grüßing, M. (2012). Räumliche Fähigkeiten und Mathematikleistung: Eine empirische Studie mit Kindern im 4. Schuljahr. Münster: Waxmann.Google Scholar
  39. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: the role of the linear number line. Developmental Psychology, 48(5), 1229–1241.CrossRefGoogle Scholar
  40. Haffner, J., Baro, K., Parzer, P., & Resch, F. (2005). Der Heidelberger Rechentest (HRT 1–4). Erfassung mathematischer Basiskompetenzen im Grundschulalter. Göttingen: Hogrefe.Google Scholar
  41. Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: evidence from eye movements on a blank screen. Frontiers in Psychology, 6, 12.CrossRefGoogle Scholar
  42. Hartmann, M., Mast, F. W., & Fischer, M. H. (2016). Psychological Research, 80, 399.  https://doi.org/10.1007/s00426-015-0722-5.CrossRefGoogle Scholar
  43. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  44. Hubbard, E., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews, 6, 435–448.CrossRefGoogle Scholar
  45. Jansen, P. (2007). Rechnen braucht Geometrie. Die Entwicklung eines tragfähigen Zahlbegriffs beruht auf räumlicher Orientierung. Grundschule, Heft 12/2007. (S. 8–11). Braunschweig: Westermann.Google Scholar
  46. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: object-specific integration of information. Cognitive Psychology, 24(2), 175–219.CrossRefGoogle Scholar
  47. Kaufmann, L., & Nuerk, H.-C. (2007). Zahlenverarbeitung: typische und atypische Entwicklungsverläufe. In L. Kaufmann, H.-C. Nuerk, K. Konrad & K. Willmes (Hrsg.), Kognitive Entwicklungsneuropsychologie (S. 383–398). Göttingen: Hogrefe.Google Scholar
  48. Kaufmann, L., Lochy, A., Drexler, A., & Semenza, C. (2004). Deficient arithmetic fact retrieval: storage or acces problem? Neuropsychologia, 42, 482–496.CrossRefGoogle Scholar
  49. Klein, E., Huber, S., Nuerk, H. C., & Moeller, K. (2014). Operational momentum affects eye fixation behaviour. The Quarterly Journal of Experimental Psychology, 67(8), 1614–1625.CrossRefGoogle Scholar
  50. Klingberg, T. (2012). Is working memory capacity fixed? Journal of Applied Research in Memory and Cognition, 1(3), 194–196.CrossRefGoogle Scholar
  51. Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324(5934), 1583–1585.CrossRefGoogle Scholar
  52. Knops, A., Zitzmann, S., & McCrink, K. (2013). Examining the presence and determinants of operational momentum in childhood. Frontiers in Psychology, 4, 325.  https://doi.org/10.3389/fpsyg.2013.00325.CrossRefGoogle Scholar
  53. Knops, A., Dehaene, S., Berteletti, I., & Zorzi, M. (2014). Can approximate mental calculation account for operational momentum in addition and subtraction? The Quarterly Journal of Experimental Psychology, 67(8), 1541–1556.CrossRefGoogle Scholar
  54. Krauthausen, G., & Scherer, P. (2007). Einführung in die Mathematikdidaktik. Heidelberg: Spektrum.CrossRefGoogle Scholar
  55. Kulp, M. T. (1999). Relationship between visual motor integration skill and academic performance in kindergarten through third grade. Optometry and Vision Science, 76, 159–163.CrossRefGoogle Scholar
  56. Kurdek, L. A., & Sinclair, R. J. (2001). Predicting reading and mathematics achievement in fourth-grade children from kindergarten readiness scores. Journal of Educational Psychology, 93, 451–455.CrossRefGoogle Scholar
  57. Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J., & Hautamäki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20(3), 65–76.Google Scholar
  58. Landerl, K., & Kaufmann, L. (2013). Dyskalkulie: Modelle, Diagnostik, Intervention (2. Aufl.). München: Ernst Reinhardt.Google Scholar
  59. Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills. Journal of Experimental Child Psychology, 103, 546–565.CrossRefGoogle Scholar
  60. Lindemann, O., & Fischer, M. H. (2015). Cognitive foundations of human number representations and mental arithmetic. The oxford handbook of numerical cognition, 35.Google Scholar
  61. Link, T., Nuerk, H. C., & Moeller, K. (2014). On the relation between the mental number line and arithmetic competencies. The Quarterly Journal of Experimental Psychology, 67, 1597–1613.CrossRefGoogle Scholar
  62. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 56(6), 1479–1498.CrossRefGoogle Scholar
  63. Lorenz, J. H. (2006). Förderdiagnostische Aufgaben für Kindergarten und Anfangsunterricht. In M. Grüßing & A. Peter-Koop (Hrsg.), Beobachten – Fördern – Dokumentieren (S. 55–66). Offenburg: Mildenberger.Google Scholar
  64. Lorenz, J. H. (2017). Einige Anmerkungen zur Repräsentation von Wissen über Zahlen. Journal für Mathematik-Didaktik, 38(1), 125–139.CrossRefGoogle Scholar
  65. Lubinski, D. (2010). Spatial ability and STEM: a sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344–351.CrossRefGoogle Scholar
  66. Maier, P. H. (1994). Räumliches Vorstellungsvermögen. Frankfurt/M., Berlin, Bern: Peter Lang.Google Scholar
  67. Maier, P. H. (1999). Räumliches Vorstellungsvermögen. Ein theoretischer Abriss des Phänomens räumliches Vorstellungsvermögen. Mit didaktischen Hinweisen für den Unterricht. Donauwörth: Auer.Google Scholar
  68. Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: comment on hypothesis testing approaches to setting cut off values for fit indexes and dangers in overgeneralizing Hu & Bentler’s (1999) findings. Structural Equation Modeling, 11, 320–341.CrossRefGoogle Scholar
  69. Masson, N., & Pesenti, M. (2014). Attentional bias induced by solving simple and complex addition and subtraction problems. The Quarterly Journal of Experimental Psychology, 67(8), 1514–1526.CrossRefGoogle Scholar
  70. Merschmeyer-Brüwer, C. (2011). Raum und Form. Vorstellung und Verständnis. Mathematik differenziert, Heft 1/2011. (S. 4–5). Braunschweig: Westermann.Google Scholar
  71. Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20(2), 101–109.CrossRefGoogle Scholar
  72. Mix, K. S., & Cheng, Y.-L. (2012). Space and math: the developmental and educational implications. In J. Benson (Hrsg.), Advances in child development and behaviour (S. 179–243). New York: Elsevier.Google Scholar
  73. National Council of Teachers of Mathematics (2010). Focus in grade 1: teaching with curriculum focal points. Reston: National Council of Teachers of Mathematics.Google Scholar
  74. Newcombe, N. S. (2010). Picture this: increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29.Google Scholar
  75. Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82(1), B25–B33.CrossRefGoogle Scholar
  76. Nuerk, H.-C., Wood, G., & Willmes, K. (2005). The universal SNARC effect. The association between number and space is amodal. Experimental Psychology, 52, 187–194.CrossRefGoogle Scholar
  77. Patro, K., Nuerk, H. C., & Cress, U. (2015). Does your body count? Embodied influences on the preferred counting direction of preschoolers. Journal of Cognitive Psychology, 27(4), 413–425.CrossRefGoogle Scholar
  78. Piaget, J., & Inhelder, B. (1975). Die Entwicklung des räumlichen Denkens beim Kinde. Stuttgart: Klett.Google Scholar
  79. Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109(3), 408–415.CrossRefGoogle Scholar
  80. Quaiser-Pohl, C. (1998). Die Fähigkeit zur räumlichen Vorstellung. Münster, New York, München, Berlin: Waxmann.Google Scholar
  81. R Core Team (2016). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. URL https://www.R-project.org/ Google Scholar
  82. Radatz, H., & Rickmeyer, K. (1991). Handbuch für den Geometrieunterricht an Grundschulen. Hannover: Schroedel.Google Scholar
  83. Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: a review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122.CrossRefGoogle Scholar
  84. Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic. Journal of Experimental Child Psychology, 91(2), 137–157.CrossRefGoogle Scholar
  85. Reinert, R. M., Huber, S., Nuerk, H. C., & Moeller, K. (2015a). Multiplication facts and the mental number line: evidence from unbounded number line estimation. Psychological Research, 79(1), 95–103.CrossRefGoogle Scholar
  86. Reinert, R. M., Huber, S., Nuerk, H. C., & Moeller, K. (2015b). Strategies in unbounded number line estimation? Evidence from eye-tracking. Cognitive Processing, 16(1), 359–363.CrossRefGoogle Scholar
  87. Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 1779–1790.CrossRefGoogle Scholar
  88. Roggeman, C., Fias, W., & Verguts, T. (2015). Basic number representation and beyond: neuroimaging and computational modeling. In Oxford handbook of numerical cognition (S. 567–583). Oxford: Oxford University Press.Google Scholar
  89. Rosseel, Y. (2012). lavaan: an R package for structural equation modeling. Journal of Statistical Software, 48, 1–36.CrossRefGoogle Scholar
  90. Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & Von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47(13), 2859–2865.CrossRefGoogle Scholar
  91. Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Hrsg.), Latent variables analysis: applications for developmental research (S. 399–419). Thousand Oaks: SAGE.Google Scholar
  92. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243.CrossRefGoogle Scholar
  93. Simon, O., Mangin, J.-F., Cohen, L., LeBihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation and language related areas in the human parietal lobe. Neuron, 33, 475–487.CrossRefGoogle Scholar
  94. Sobel, M. E. (1982). Asymptotic condence intervals for indirect effects in structural equation models. In S. Leinhardt (Hrsg.), Sociological methodology (S. 290–312). Washington: American Sociological Association.Google Scholar
  95. Sokol, S. M., McCloskey, M., Cohen, N. J., & Aliminosa, D. (1991). Cognitive representations and processes in arithmetic: inferences from the performances of brain-damaged patients. Journal of Experimental Psychology: Learning, Memory & Cognition, 17, 355–376.Google Scholar
  96. Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google Scholar
  97. Thurstone, L. L. (1950). Some primary abilities in visual thinking. Proceedings of the American Psychological Society, 94(6), 517–521.Google Scholar
  98. Tronsky, L. N. (2005). Strategy use, the development of automaticity, and working memory involvement in complex multiplication. Memory & Cognition, 33, 927–940.CrossRefGoogle Scholar
  99. Umiltà, C., Priftis, K., & Zorzi, M. (2009). The spatial representation of numbers: evidence from neglect and pseudoneglect. Experimental Brain Research, 192(3), 561–569.CrossRefGoogle Scholar
  100. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 139(2), 352.CrossRefGoogle Scholar
  101. Wechsler, D. (2001). The Wechsler Individual Achievement Test. 2. San Diego: The Psychological Corporation. WIAT-IIGoogle Scholar
  102. Winkler, D. (2006). Karteien zum Soma-Würfel. Bauen und Experimentieren mit dem Soma-Würfel. Braunschweig: Westermann.Google Scholar
  103. Zorzi, M., Priftis, K., & Umilta, C. (2002). Neglect disrupts the mental number line. Nature, 417, 138–139.CrossRefGoogle Scholar

Copyright information

© GDM 2018

Authors and Affiliations

  1. 1.Institut für Professionalisierung in der Elementar- und PrimarpädagogikPädagogische Hochschule SteiermarkGrazÖsterreich

Personalised recommendations