Characterization of flow through random media via Karhunen–Loève expansion: an information theory perspective

Abstract

We leverage on information theory to assess the fidelity of approximated numerical stochastic groundwater flow simulations. We consider flow in saturated heterogeneous porous media, where the Karhunen–Loève (KL) expansion is used to express the hydraulic conductivity as a spatially correlated random field. We quantify the impact of the KL expansion truncation on the uncertainty associated with punctual values of hydraulic conductivity and flow velocity. In particular, we compare the statistical dependence between variables by considering (a) linear correlation metrics (Pearson coefficient of correlation) and (b) metrics capable of accounting for nonlinear dependence (coefficient of uncertainty based on mutual information). We test the selected metrics by analyzing the relationship between hydraulic conductivity fields generated via Monte Carlo sampling with different levels of truncation of the KL expansion and the corresponding fluid velocity fields, obtained through the numerical solution of Darcy’s flow. Our analysis shows that employing linear correlation metrics leads to a general overestimation of the correlation level and information theory based indicators are valuable tools to assess the impact of the KL truncation on the output velocity values. We then analyze the impact of the number of retained modes on the spatial organization of the velocity field. Results indicates that (i) as the number of modes decrease the spatial correlations of the velocity field increases; (ii) linear indicators of spatial correlation are again larger than their nonlinear counterparts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Bianchi, M., Pedretti, D.: Geological entropy and solute transport in heterogeneous porous media. Water Resour. Res. 53(6), 4691–4708 (2017). https://doi.org/10.1002/2016WR020195

    Article  Google Scholar 

  2. Bianchi, M., Pedretti, D.: An entrogram-based approach to describe spatial heterogeneity with applications to solute transport in porous media. Water Resour. Res. 54(7), 4432–4448 (2018). https://doi.org/10.1029/2018WR022827

    Article  Google Scholar 

  3. Butera, I., Vallivero, L., Ridolfi, L.: Mutual information analysis to approach nonlinearity in groundwater stochastic fields. Stoch. Environ. Res. Risk Assess. 32(10), 2933–2942 (2018). https://doi.org/10.1007/s00477-018-1591-4

    Article  Google Scholar 

  4. Comolli, A., Hakoun, V., Dentz, M.: Mechanisms, upscaling, and prediction of anomalous dispersion in heterogeneous porous media. Water Resour. Res. 55(10), 8197–8222 (2019). https://doi.org/10.1029/2019WR024919

    Article  Google Scholar 

  5. Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, Hoboken (2006)

    Google Scholar 

  6. Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin (1989)

    Google Scholar 

  7. de Barros, F.P.J., Rubin, Y.: A risk-driven approach for subsurface site characterization. Water Resour. Res. (2008). https://doi.org/10.1029/2007WR006081

    Article  Google Scholar 

  8. Dell’Oca, A., Porta, G., Guadagnini, A., Riva, M.: Space-time mesh adaptation for solute transport in randomly heterogeneous porous media. J. Contam. Hydrol. 212, 28–40 (2018). https://doi.org/10.1016/j.jconhyd.2017.07.001

    Article  Google Scholar 

  9. Esfandiar, B., Porta, G., Perotto, S., Guadagnini, A.: Anisotropic mesh and time step adaptivity for solute transport modeling in porous media. In: Perotto, S., Formaggia, L. (eds.) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, pp. 1–25. Springer, Milan (2014)

    Google Scholar 

  10. Fiori, A., Jankovic, I.: On preferential flow, channeling and connectivity in heterogeneous porous formations. Math. Geosci. 44(2), 133–145 (2012). https://doi.org/10.1007/s11004-011-9365-2

    Article  Google Scholar 

  11. Gelhar, L.: Stochastic Subsurface Hydrology. Prentice-Hall, Upper Saddle River (1993)

    Google Scholar 

  12. Goodwell, A.E., Kumar, P.: Temporal information partitioning: characterizing synergy, uniqueness, and redundancy in interacting environmental variables. Water Resour. Res. 53(7), 5920–5942 (2017). https://doi.org/10.1002/2016WR020216

    Article  Google Scholar 

  13. Hakoun, V., Comolli, A., Dentz, M.: Upscaling and prediction of Lagrangian velocity dynamics in heterogeneous porous media. Water Resour. Res. (2019). https://doi.org/10.1029/2018WR023810

    Article  Google Scholar 

  14. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Kaiser, A., Schreiber, T.: Information transfer in continuous processes. Physica D 166(1), 43–62 (2002). https://doi.org/10.1016/S0167-2789(02)00432-3

    MathSciNet  Article  MATH  Google Scholar 

  16. Katsoulakis, M.A., Plechaĉ, P.: Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems. J. Chem. Phys. 139(7), 074115 (2013). https://doi.org/10.1063/1.4818534

    Article  Google Scholar 

  17. Kikuchi, C.P., Ferré, T.P.A., Vrugt, J.A.: On the optimal design of experiments for conceptual and predictive discrimination of hydrologic system models. Water Resour. Res. 51(6), 4454–4481 (2015). https://doi.org/10.1002/2014WR016795

    Article  Google Scholar 

  18. Le Borgne, T., de Dreuzy, J.R., Davy, P., Bour, O.: Characterization of the velocity field organization in heterogeneous media by conditional correlation. Water Resour. Res. (2007). https://doi.org/10.1029/2006WR004875

    Article  Google Scholar 

  19. Lin, G., Tartakovsky, A.: An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media. Adv. Water Resour. 32(5), 712–722 (2009). https://doi.org/10.1016/j.advwatres.2008.09.003

    Article  Google Scholar 

  20. Liu, Z., Liu, Z., Peng, Y.: Dimension reduction of Karhunen–Loeve expansion for simulation of stochastic processes. J. Sound Vib. 408, 168–189 (2017). https://doi.org/10.1016/j.jsv.2017.07.016

    Article  Google Scholar 

  21. Loève, M.: Probability Theory. Graduate Texts in Mathematics. Springer, New York (1978)

    Google Scholar 

  22. Marzouk, Y.M., Najm, H.N.: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228(6), 1862–1902 (2009). https://doi.org/10.1016/j.jcp.2008.11.024

    MathSciNet  Article  MATH  Google Scholar 

  23. Moslehi, M., de Barros, F.: Uncertainty quantification of environmental performance metrics in heterogeneous aquifers with long-range correlations. J. Contam. Hydrol. 196, 21–29 (2017). https://doi.org/10.1016/j.jconhyd.2016.12.002

    Article  Google Scholar 

  24. Nearing, G.S., Ruddell, B.L., Clark, M.P., Nijssen, B., Peters-Lidard, C.: Benchmarking and process diagnostics of land models. J. Hydrometeorol. 19(11), 1835–1852 (2018). https://doi.org/10.1175/JHM-D-17-0209.1

    Article  Google Scholar 

  25. Neuman, S.P., Guadagnini, A., Riva, M., Siena, M.: Recent advances in statistical and scaling analysis of earth and environmental variables. In: Mishra, P.K., Kuhlman, K.L. (eds.) Advances in Hydrogeology, pp. 1–25. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6479-21

    Google Scholar 

  26. Oberst, S., Niven, R.K., Lester, D.R., Ord, A., Hobbs, B., Hoffmann, N.: Detection of unstable periodic orbits in mineralising geological systems. Chaos Interdiscip. J. Nonlinear Sci. 28(8), 085711 (2018). https://doi.org/10.1063/1.5024134

    Article  Google Scholar 

  27. Renard, P., Allard, D.: Connectivity metrics for subsurface flow and transport. Adv. Water Resour. 51, 168–196 (2013). https://doi.org/10.1016/j.advwatres.2011.12.001

    Article  Google Scholar 

  28. Ruddell, B.L., Kumar, P.: Ecohydrologic process networks: 1. Identification. Water Resour. Res. (2009). https://doi.org/10.1029/2008WR007279

    Article  Google Scholar 

  29. Salandin, P., Fiorotto, V.: Solute particles in highly heterogeneous aquifers. Water Resour. Res. 34(5), 949–961 (1998)

    Article  Google Scholar 

  30. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    MathSciNet  Article  MATH  Google Scholar 

  31. Theil, H.: Statistical Decomposition Analysis. North-Holland Publishing Co, Amsterdam (1972). https://doi.org/10.1017/S0770451800006916

    Google Scholar 

  32. Wright, E., Sund, N., Richter, D., Porta, G., Bolster, D.: Upscaling mixing in highly heterogeneous porous media via a spatial Markov model. Water 11(1), 53 (2018). https://doi.org/10.3390/w11010053

    Article  Google Scholar 

  33. Zahm, O., Constantine, P., Prieur, C., Marzouk, Y.: Gradient-based dimension reduction of multivariate vector-valued functions. (2018). arXiv:1801.07922

  34. Zhang, D., Lu, Z.: An efficient, high-order perturbation approach for flow in random porous media via Karhunen–Loève and polynomial expansions. J. Comput. Phys. 194(2), 773–794 (2004). https://doi.org/10.1016/j.jcp.2003.09.015

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aronne Dell’Oca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dell’Oca, A., Porta, G.M. Characterization of flow through random media via Karhunen–Loève expansion: an information theory perspective. Int J Geomath 11, 18 (2020). https://doi.org/10.1007/s13137-020-00155-x

Download citation

Keywords

  • Fluid flow
  • Heterogeneous media
  • Monte Carlo simulation
  • Information theory

Mathematics Subject Classification

  • 60G99
  • 94-10
  • 76S05
  • 65C05
  • 65C20