Skip to main content
Log in

Operator-theoretic and regularization approaches to ill-posed problems

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

A general framework of regularization and approximation methods for ill-posed problems is developed. Three levels in the resolution processes are distinguished and emphasized in this expository-research paper: philosophy of resolution, regularization–approximation schema, and regularization algorithms. Dilemmas and methodologies of resolution of ill-posed problems and their numerical implementations are examined with particular reference to the problem of finding numerically minimum weighted-norm least squares solutions of first kind integral equations (and more generally of linear operator equations with non-closed range). An emphasis is placed on the role of constraints, function space methods, the role of generalized inverses, and reproducing kernels in the regularization and stable computational resolution of these problems. The thrust of the contribution is devoted to the interdisciplinary character of operator-theoretic and regularization methods for ill-posed problems, in particular in mathematical geoscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10, 1217–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  • Alber, Y.I.: The solution of nonlinear equations with monotone operators in Banach spaces. Sib. Math. J. 16, 1–8 (1975)

    Article  MathSciNet  Google Scholar 

  • Alber, Y.I.: Iterative regularization in Banach spaces. Soviet Math. (Iz. VUZ) 30, 1–8 (1986)

    Google Scholar 

  • Alber, Y.I.: The regularization method for variational inequalities with nonsmooth unbounded operators in Banach spaces. Appl. Math. Lett. 6, 63–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Alber, Y.I.: Generalized projection operators in Banach spaces: properties and applications. Funct. Differ. Equ. Proc. Isr. Semin. 1, 1–21 (1994)

    MathSciNet  MATH  Google Scholar 

  • Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A. (ed.) Theory and Applications of Nonlinear Operators of Monotone and Assertive Type, pp. 15–50. Marcel Dekker, New York (1996)

    Google Scholar 

  • Alber, Y.I., Notik, A.: Perturbed unstable variational inequalities with unbounded operator on approximately given sets. Set Valued Anal. 1(4), 393–402 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Alber, Y.I., Reich, S.: An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panamerian Math. J. 4, 39–54 (1994)

    MathSciNet  MATH  Google Scholar 

  • Alber, Y.I., Rjazanceva, I.: Variational inequalities with discontinuous monotone mappings. Sov. Math. Dokl. 25, 206–210 (1982)

    Google Scholar 

  • Albert, A.: Regressions and the Moore–Penrose Pseudoinverse. Academic Press, New York (1972)

    MATH  Google Scholar 

  • Angell, T.S., Nashed, M.Z.: Operator-theroetic and computational aspects of ill-posed problems in antenna theory. In: Proceedings of Symposia in Pure Mathematics Theory of Networks and Syst. pp. 499–511, Delft University of Technology, The Netherlands (1979)

  • Anger, G.: A characterization of inverse gravimetric source problem through extremal measures. Rev. Geophys. Space Phys. 19, 299–306 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Anger, G.: Inverse Problems in Differential Equations. Akademie-Verlag, Berlin (1990)

    MATH  Google Scholar 

  • Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  • Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, Applied Mathematical Sciences, vol. 147, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  • Baart, M.L.: Methods for Solution of Fredholm Integral Equations of the First Kind. CSIR, Pretoria, Technical Report, vol. 104 (1979)

  • Baer, R.: Linear Algebra and Projective Geometry. Academic Press, New York (1952)

    MATH  Google Scholar 

  • Backus, G.E., Gilbert, F.: Numerical applications of a formalism for geophysical inverse problems. Geophys. J.R. Astron. Soc. 13, 247–276 (1967)

    Article  Google Scholar 

  • Bakusinskii, A.B.: A general method for constructing regularizing algorithms for a linear incorrect equation in Hilbert space. U.S.S.R. Comput. Math. Meth. Phys. 7, 279–284 (1967)

    Article  MathSciNet  Google Scholar 

  • Bakusinskii, A.B.: On the Principle of Iterative Regularization. U.S.S.R. Comput. Math. Meth. Phys. 19, 256–260 (1979)

    Article  MathSciNet  Google Scholar 

  • Barzaghi, R., Sansò, F.: Remarks on the inverse gravimetric problem. Boll. Geod. Scienze Affini 45, 203–216 (1986)

    MATH  Google Scholar 

  • Baumeister, J.: Stable Solution of Inverse Problems. Vieweg, Braunschweig (1987)

    Book  MATH  Google Scholar 

  • Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  • Bertero, M., de Mol, C., Viano, G.A.: Linear inverse problems with discrete data. Inverse Prob. 4: 573–594 (1985/88)

  • Bertero, M., Brianzi, P., Pike, E.R., Rebolia, L.: Linear regularizing algorithms for positive solutions of linear inverse problems. Proc. R. Soc. Lond. A 415, 257–275 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertero, M., DeMol, C., Viano, G.A.: The stability of inverse problems. In: Baltes, H.P. (ed.) Inverse Scattering Problems in Optics. Springer, Berlin (1979)

    Google Scholar 

  • Binder, A., Engl, H.W., Groetsch, C.W., Neubauer, A., Scherzer, O.: Weakly closed nonlinear operators and parameter identification in parabolic equations by Tiknonov regularization. Appl. Anal. 55, 215–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Bissantz, H., Hohage, T., Munk, A., Ruymgaart, F.: Convergence rates of general regularization methods for statistical inverse probelms and applications. SIAM J. Numer. Anal. 45, 2610–2626 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Bjerhammar, A.: Rectangular reciprocal matrices, with special reference to geodetic calculations. Bull. Géod. 25, 188–220 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Bjerhammar, A.: Theory of Errors and Generalized Matrix Inverses. Elsevier Scientific Publ. Co., Amsterdam (1973)

    MATH  Google Scholar 

  • Boullion, T.L., Odell, P.L.: Generalized Inverse Matrices. Wiley-Interscience, New York (1971)

    MATH  Google Scholar 

  • Bruck, R.E.: A strongly convergent iterative solution of \(0\in Ux\) for a maximal montone operator \(U\) in Hilbert space. J. Math. Anal. Appl. 48, 114–126 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Burger, M., Kaltenbacher, B.: Regularizing Newton–Kaczmarz methods for nonlinear ill-posed problems. SIAM J. Numer. Anal. 44, 1775–1797 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Cavalier, L., Golubev, G.K.: Risk hull method and regularization by projections of illposed inverse problems. Ann. Stat. 34, 1653–1677 (2006)

    Article  MATH  Google Scholar 

  • Cavalier, L., Golubev, G.K., Picard, D., Tsybakov, A.B.: Oracle inequalities for inverse problems. Ann. Stat. 30, 843–874 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Craven, B.D., Nashed, M.Z.: Generalized implicit function theorems when the derivative has no bounded inverse: theory, methods, and applications. Nonlinear Anal. 6, 375–387 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, P.J.: Interpolation and Approximation. Blaisdell, New York (1963)

    MATH  Google Scholar 

  • Defrise, M., de Mol, C.: A note on stopping rules for iterative regulaization methods and filtered SVD. In: Inverse Problems: An Interdisziplinary Study. pp. 261–268, Academic Press, San Diego (1987)

  • Desbat, L., Girard, D.: The “minimum reconstruction error” choice of regularization parameters: some more efficient methods and their application of deconvolution problems. SIAM J. Sci. Comptu. 16, 187–1403 (1995)

    MathSciNet  MATH  Google Scholar 

  • Diaz, J.B., Metcalf, F.T.: On interation procedures for equations of the first kind, \(Ax=y\), and Picard’s criterion for the existence of a solution. Math. Comput. 24, 923–935 (1970)

    MATH  Google Scholar 

  • Dicken, V., Maass, P.: Wavelet–Galerkin methods for ill-posed problems. J. Inverse Ill-posed Probl. 4, 203–222 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Dimitiev, V.I., Il’inski, A.S., Svenshnikov, A.G.: The developments of mathematical methods for the study of direct and inverse problems in electrodynamics. Russ. Math. Surv. 31, 133–152 (1976)

    Article  Google Scholar 

  • Dobson, D.C., Scherzer, O.: Analysis of regularized total variation penalty methods for denoising. Inverse Prob. 12, 601–617 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D.L.: Nonlinear solution of linear inverse problems by Wavelet–Vaguelette decomposition. Appl. Comput. Harm. Anal. 2, 101–126 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D.L., Johnstone, I.M.: Minimax estimation via wavelet shrinkage. Ann. Stat. 26, 879–921 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Dunford, N., Schwarz, J.: Linear Operators, vol. II. Wiley-Interscience, New York (1963)

    Google Scholar 

  • Duris, C.S.: Optimal quadrature formulas using generalized inverses. Part I. General theory and minimum variance formulas. Math. Comput. 25, 495–504 (1971)

    MATH  Google Scholar 

  • Eggermont, P.P.B.: Maximum entropy regularization for Fredholm integral equations of the first kind. SIAM J. Math. Anal. 24, 1557–1576 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Eggermont, P.P.B., LaRicca, V.N.: Maximum Penalized Likelihood Estimation. Volume II. Regression. Springer, New York (2009)

    Google Scholar 

  • Eggermont, P.P.B., LaRicca, V.N., Nashed, M.Z.: On weakly bounded noise in ill-posed problems. Inverse Prob. 25, 115018–115032 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Eggermont, P.P.B., LaRicca, V.N., Nashed, M.Z.: Moment discretization of ill-posed problems with discrete weakly bounded noise. Int. J. Geomath. 3, 155–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Eggermont, P.N., LaRiccia, V., Nashed, M.Z.: Noise models for ill-posed problems. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, 2nd edn, pp. 1633–1658. Springer, New York (2015)

    Chapter  Google Scholar 

  • Eicke, B.: Iteration methods for convexly constrained ill-posed problems in hilbert space. Numer. Funct. Anal. Optim 13, 413–429 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Eisenhart, C.: Carl Friedrich Gauss, vol. VI, pp. 74–81. International Encyclopedia of Social Sciences, New York (1986)

    Google Scholar 

  • Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North Holland, Amsterdam (1976)

    MATH  Google Scholar 

  • Elden, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT 17, 134–145 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Elden, L.: An algorithm for the regularization of ill-conditioned banded least squares problems. SIAM J. Sci. Stat. Comput. 5, 237–254 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Engl, H.: Discrepancy principles for Tikhonov regularization of ill-posed problems, leading to optimal convergence rates. J. Optim. Theory Appl. 52, 209–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Engl, H.: Integralgleichungen. Springer Lehrbuch Mathematik, Wien (1997)

    Book  MATH  Google Scholar 

  • Engl, H.W., Nashed, M.Z.: Stochastic projectional schemes for random linear operator equations of the first and second kinds. Numer. Funct. Anal. Optim. 1, 451–473 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Engl, H.W., Nashed, M.Z.: New extremal characterizations of generalized inverses of linear operators. J. Math. Anal. Appl. 82, 566–586 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  • Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularisation of non-linear ill-posed problems. Inverse Prob. 5, 523–540 (1989)

    Article  MATH  Google Scholar 

  • Engl, H., Louis, A.K., Rundell, W. (eds.): Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)

  • Flemming, J., Hofmann, B.: A new approach to source conditions in regularization with general residual term. Numer. Funct. Anal. Optim. 31, 254–284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Frankenberger, H., Hanke, M.: Kernel polynomials for the solution of indefinite and ill-posed problems. Numer. Algorithms 25, 197–212 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Franklin, J.N.: Well-posed stochastic extensions to ill-posed linear problems. J. Math. Anal. Appl. 31, 682–716 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Franklin, J.N.: On Thikhonov’s method for ill-posed problems. Math. Comput. 28, 889–907 (1974)

    MATH  Google Scholar 

  • Fredholm, I.: Sur une classe d’equations functionelles. Acta Math. 27, 365–390 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden, W.: On approximation by harmonic splines. Manuscr. Geod. 6, 193–244 (1981)

    MATH  Google Scholar 

  • Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Stuttgart, Leipzig (1999)

    MATH  Google Scholar 

  • Freeden, W., Gutting, M.: Special Functions of Mathematical (Geo)Physics. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  • Freeden, W., Maier, T.: Spectral and multiscale signal-to-noise thresholding of spherical vector fields. Comput. Geosci. 7(3), 215–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden, W., Michel, V.: Multiscale Potential Theory (with Applications to Geoscience). Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  • Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. Int. J. Geomath. 2, 177–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden, W., Schneider, F.: Regularization wavelets and multiresolution. Inverse Prob. 14, 493–515 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden, W., Schreiner, M.: Satellite gravity gradiometry (SGG): from scalar to tensorial solution. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn. Springer, New-York (2015)

    Chapter  Google Scholar 

  • Freeden, W., Witte, B.: A combined (spline-)interpolation and smoothing method for the determination of the gravitational potential from heterogeneous data. Bull. Géod. 56, 53–62 (1982)

    Article  MathSciNet  Google Scholar 

  • Freeden, W., Michel, V., Nutz, H.: Satellite-to-satellite tracking and satellite gravity gradiometry (advanced techniques for high-resolution geopotential field determination). J. Eng. Math. 43, 19–56 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden, W., Nashed, Z., Sonar, T. (Eds.): Handbook of Geomathematics, vols. 1,2, and 3, 2nd edn. Springer, New-York (2015)

  • Freeden, W., Schneider, F., Schreiner, M.: Gradiometry—an inverse problem in modern satellite geodesy, In: Engl, H.W., Louis, A., Rundell, W. (eds.), GAMM-SIAM Symposium on Inverse Problems: Geophysical Applications, pp. 179–239 (1997)

  • Friedrich, K.: Allgemeine für die Rechenpraxis geeignete Lösung für die Aufgaben der kleinsten Absolutsumme und der günstigsten Gewichtsverteilung. Z. Vermess. 337–358 (1937)

  • Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialglei-chungen. Akademie-Verlag, Berlin (1974)

    MATH  Google Scholar 

  • Galerkin, B.G.: Expansions in stability problems for elastic rods and plates (in Russian). Vestn. Inzkenorov 19, 897–908 (1915)

    Google Scholar 

  • Gauss, C.F.: Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium, Hamburg (1809), Werke 7. Translated into English by C.H, Davis (1963)

  • Gauss, C.F.: Theoria Combinationis Observationum Erroribus Minimis Obnoxiae, vol. 1. Teil, Göttingen (1821)

    Google Scholar 

  • Gebbauer, B., Scherzer, O.: Impedance-acoustic tomography. SIAM J. Appl. Math. 69, 565–576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Gerhards, C.: Spherical Multiscale Methods in Terms of Locally Supported Wavelts: Theory and Application to Geomagnetic Modeling. Ph.D.- Thesis, Geomathematics Group, University of Kaiserslautern (2011)

  • Gfrerer, H.: An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math. Comput. 49, 523–542 (1987a)

    Article  MathSciNet  MATH  Google Scholar 

  • Gfrerer, H.: Supplement to: an a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math. Comput. 49, S5–S12 (1987b)

    Article  MATH  Google Scholar 

  • Glockner, O.: On Numerical Aspects of Gravitational Field Modelling from SST and SGG by Harmonic Splines and Wavelets (with Application to CHAMP Data), Ph.D. Thesis, Geomathematics Group, University of Kaiserslautern (2001)

  • Gholami, A., Siahkoohi, H.R.: Regularization of linear and nonlinear geophysical ill-posed problems with joint sparsity constraints. Geophys. J. Int. 180, 871–882 (2010)

    Article  Google Scholar 

  • Goldstine, H.H.: A History of Numerical Analysis from the 16th Through the 19th Century. Springer, New York (1977)

    Book  MATH  Google Scholar 

  • Golub, G.H., Van Loan, C.F.: Marix Computations, 3rd edn. The John Hopkins University Press, Baltimore, MD (1996)

    Google Scholar 

  • Grafarend, E.W.: Six lectures on geodesy and global geodynamics. In: Moritz, H., Sünkel, H. (eds.) Proceedings of the Third International Summer School in the Mountains, pp. 531–685 (1982)

  • Grafarend, E.W., Awange, J.L.: Applications of Linear and Nonlinear Models. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  • Graves, J., Prenter, P.M.: On generalized iterative filters for ill-posed problems. Numer. Math. 30, 281–299 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Grenander, U.: Abstract Inference. Wiley, New York (1981)

    MATH  Google Scholar 

  • Groetsch, C.W.: Generalized Inverses of Linear Operators. Marcel Dekker. Inc., New York (1977)

    MATH  Google Scholar 

  • Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, London (1984)

    MATH  Google Scholar 

  • Groetsch, C.W.: Inverse Problems in the Mathematical Science. Vieweg, Braunschweig (1993)

    Book  MATH  Google Scholar 

  • Groetsch, C.W.: Comments on Morozov’s discrepancy principle. In: Hämmerlin, G., Hoffmann, K.H. (eds.) Improperly Posed Problems and Their Numerical Treatment, pp. 97–104. Birkhäuser, Basel (1983)

    Chapter  Google Scholar 

  • Groetsch, C.W., Scherzer, O.: Iterative stabilization and edge detection. In: Nashed, M.Z., Scherzer, O. (eds.) Contemporary Mathematics, vol. 313, pp. 129–141. American Mathematical Society, Providence, RI (2002)

  • Hadamard, J.: Sur les problémes aux dérivés partielles et leur signification physique. Princeton Univ. Bull. 13, 49–52 (1902)

    Google Scholar 

  • Hadamard, J.: Lectures on the Cauchy Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    MATH  Google Scholar 

  • Haddad, R.A., Parsons, T.W.: Digital Signal Processing: Theory, Applications and Hardware. Computer Science Press, Rockville (1991)

    Google Scholar 

  • Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems. Pitman Research Notes in Mathematics. Longman House, Harlow (1995)

    MATH  Google Scholar 

  • Hanke, M., Hansen, P.C.: Regularization methods for large scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MathSciNet  MATH  Google Scholar 

  • Hanke, M., Scherzer, O.: Inverse probelms light: numerical differentiation. Am. Math. Mon. 108, 512–521 (2001)

    Article  MATH  Google Scholar 

  • Hanke, M., Vogel, C.R.: Two-level preconditioners for regularized inverse problems. Numer. Math. 83, 385–402 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, P.C.: Analysis of discrete Ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Hanson, R.J.: A numerical methods for solving Fredholm inegral equations of the first kind. SIAM J. Numer. Anal. 8, 616–662 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Hegland, M.: Variable Hilbert scales and their interpolation inequalities with applications to Tikhonov regularization. Appl. Anal. 59, 207–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Helmert, F.: Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate. Teubner, Berlin (1907)

    MATH  Google Scholar 

  • Heuser, H.: Funktionalanalysis. 4. Auflage, Teubner (1975)

  • Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig (1912)

    MATH  Google Scholar 

  • Hille, E.: Introduction to the general theory of reproducing kernels. Rocky Mt. J. Math. 2, 321–368 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofmann, B.: Inverse Probleme. Teubner, Leipzig (1999)

    MATH  Google Scholar 

  • Hofmann, B., Mathé, P., von Weiszäcker, H.: Regularisation in Hilbert space under unbounded operators and general source conditions. Inverse Prob. 25, 115–130 (2009)

    Article  Google Scholar 

  • Hohage, T., Pricop, M.: Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Probl. Imaging 2, 271–290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Hurwitz, W.A.: On the pseudo-resolvent to the kernel of an integral equation. Trans. Am. Math. Soc. 13, 405–418 (1912)

    MathSciNet  MATH  Google Scholar 

  • Ismail, M., Nashed, M.Z., Zayed, A., Ghaleb, A.: Mathematical Analysis, Wavelets and Signal Processing. Contemporary Mathematics, vol. 190. American Mathematical Society, Providence, RI (1995)

    Book  MATH  Google Scholar 

  • Ivanov, V.K., Kudrinskii, VYu.: Approximate solution of linear operator equations in hilbert space by the method of least squares. I. Z. Vycisl. Mat. i Mat. Fiz 6, 831–944 (1966)

    MathSciNet  Google Scholar 

  • Jacobsen, M., Hansen, P.C., Saunders, M.A.: Subspace preconditioned LSQR for discrete ill-posed problems. BIT Numer. Math. 43, 975–989 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Jorgensen, P., Tian, F.: Graph Laplacians and discrete reproducing kernel Hilbert spaces from restrictions. Stochastic Analysis and Applications 34, 722–747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Kammerer, W.J., Nashed, M.Z.: The convergence of the conjugate gradient method for singular linear operator equations. SIAM J. Numer. Anal. 9, 165–181 (1972a)

    Article  MathSciNet  MATH  Google Scholar 

  • Kammerer, W.J., Nashed, M.Z.: Iterative methods for best approximate solutions of linear integral equation of the first and second kind. J. Math. Anal. Appl. 40, 547–573 (1972b)

    Article  MathSciNet  MATH  Google Scholar 

  • Kantorowitsch, L.W., Akilow, G.P.: Funktionalanalysis in Normierten Räumen. Akademie-Verlag, Berlin (1964)

    MATH  Google Scholar 

  • Kato, T.: Perturbation theory for nullity definciency and other quantities of linear operators. J. Anal. Math. 6, 271–322 (1958)

    Article  Google Scholar 

  • Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  • Kowar, R., Scherzer, O.: Convergence analysis of a Landweber–Kaczmarz method for sovling nonlinear ill-posed problems. In: Romanov, S., Kabanikhin, S.I., Anikonov, Y.E., Bukhgeim, A.L. (eds.) Ill-Posed and Inverse Problems. VSP Publishers, Zeist (2002)

    MATH  Google Scholar 

  • Kress, R.: Linear Integral Equations, 2nd edn. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  • Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    MATH  Google Scholar 

  • Larson, D., Massopust, P., Nashed, M.Z., Nguyen, M.C., Papadakis, M., Zayed, A. (Eds.): Frames and Operator Theory in Analysis and Signal Processing. Contemporary Mathematics, vol. 451, American Mathematical Society, Providence, RI (2008)

  • Lavrentiev, M.M.: Some Improperly Posed Problems of Mathematicsl Physics, Izdat. Sibirsk. Otdel, Akad. Nauk. SSSR, Novosibirsk (1962), Englisch Transl., Springer Tracts in Natural Philosophy, Vol. 11, Springer-Verlag, Berlin (1967)

  • Lieusternik, L.A., Sobolev, V.J.: Elements of Functional Analysis. Ungar, New York (1961)

    Google Scholar 

  • Lin, Y., Brown, L.D.: Statistical properties of the method of regularization with periodic Gaussian reproducing kernel. Ann. Stat. 32(4), 1723–1743 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Liskovets, O.A.: Regularization of variational inqualities with pseudo-monotone operators on approximately given sets. Differ. Equ. 11, 1970–1977 (1989)

    Google Scholar 

  • Liu, F., Nashed, M.Z.: Tikhonov regularization of nonlinear ill-posed problems with closed operators in Hilbert scales. J. Inverse Ill-Posed Prob. 5, 363–376 (1997)

    MathSciNet  MATH  Google Scholar 

  • Locker, J., Prenter, P.M.: Regularization with differential operators. J. Math. Anal. Appl. 74, 504–529 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)

    Book  MATH  Google Scholar 

  • Louis, A.K., Maass, P.: A mollifier method for linear equations of the first kind. Inverse Prob. 6, 427–440 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Louis, A.K., Maass, P., Rieder, A.: Wavelets: Theorie und Anwendungen. B. G. Teubner Studienbücher, Stuttgart (1998)

    Book  MATH  Google Scholar 

  • Mair, B.A., Ruymgaart, F.H.: Statistical inverse estimation in Hilbert scales. SIAM J. Appl. Math. 56, 1424–1444 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Mathé, P.: The lepskii principle revisited. Inverse Prob. 22, 111–115 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Mathé, P., Hofmann, B.: How general are general source conditions? Inverse Probl. 24. https://doi.org/10.1088/0266-5611/24/1/015009 (2008)

  • Mathé, P., Pereverzev, S.V.: The discretized discrepancy principle under general source conditions. J. Complex. 22, 371–381 (2006a)

    Article  MathSciNet  MATH  Google Scholar 

  • Mathé, P., Pereverzev, S.V.: Regularization of some linear ill-posed problems with discretized random noisy data. Math. Comput. 75, 1913–1929 (2006b)

    Article  MathSciNet  MATH  Google Scholar 

  • Mathé, P., Pereverzev, S.V.: Geometry of linear ill-posed problems in variable Hilbert scales. Inverse Prob. 19, 789–803 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Marti, J.T.: An algorithm for computing minimum norm solutions of fredholm integral equaions of the first kind. SIAM J. Numer. Anal. 15, 1071–1076 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Marti, J.T.: On the convergence of an algorithm computing minimum-norm solutions of ill-posed problems. Math. Comput. 34, 521–527 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Meissl, P.A.: A Study of Covariance Functions Related to the Earth’s Disturbing Potential. Department of Geodetic Science, vol. 151. The Ohio State University, Columbus, OH (1971)

    Google Scholar 

  • Meissl, P.A.: Hilbert spaces and their applications to geodetic least squares problems. Boll. Geod. Sci. Aff. 1, 181–210 (1976)

    MathSciNet  MATH  Google Scholar 

  • Michel, V.: A Multiscale Method for the Gravimetry Problem: Theoretical and Numerical Aspects of Harmonic and Anharmonic Modelling. Ph.D.-thesis, Geomathematics Group, University of Kaiserslautern, Shaker, Aachen (1999)

  • Michel, V.: Scale continuous, scale discretized and scale discrete harmonic wavelets for the outer and the inner space of a sphere and their application to an inverse problem in geomathematics. Appl. Comput. Harm. Anal. (ACHA) 12, 77–99 (2002a)

    Article  MathSciNet  MATH  Google Scholar 

  • Michel, V.: A Multiscale Approximation for Operator Equations in Separable Hilbert Spaces—Case Study: Reconstruction and Description of the Earth’s Interior. Habilitation Thesis, University of Kaiserslautern, Geomathematics Group, Shaker, Aachen (2002b)

  • Miller, K.: Least squares methods for ill-posed problems with a prescribed bounded. SIAM J. Math. Anal. 1, 52–74 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 394–395 (1920)

    Google Scholar 

  • Moore, E.H.: General Analysis. Mem. Am. Math. Soc. 1, 197–209 (1935)

    Google Scholar 

  • Moritz, H.: Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe (1980)

    Google Scholar 

  • Morozov, V.A.: On the solution of functional equations by the method of regularization. Sov. Math. Doklady 7, 414–41 (1966)

    MathSciNet  MATH  Google Scholar 

  • Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. (in Russian), Moscow University, (1975) (English transl. editor M.Z. Nashed), Springer, New York (1984)

  • Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)

    Book  Google Scholar 

  • Nagel, H.-H.: On the estimation of optical flow: relations between new approaches and some new results. Artif. Intell. 33, 299–324 (1987)

    Article  Google Scholar 

  • Nashed, M.Z.: Steepest descent for singular linear opertor equations. SIAM J. Numer. Anal. 7, 358–362 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Nashed, M.Z.: Generalized inverses, normal solvability and iteration for singular operator equations. In: Rall, L.B. (ed.) Nonlinear Functional Analysis and Applications, pp. 311–359. Academic Press, New York (1971a)

    Chapter  Google Scholar 

  • Nashed, M.Z.: Differentiability and related properties of nonlinear operators: some aspects of the role of differentials in nonlinear functional analyis. In: Rall, L.B. (ed.) Nonlinear Functional analysis and Applications, pp. 103–309. Academic Press, New York (1971b)

    Chapter  Google Scholar 

  • Nashed, M.Z.: Some Aspects of Regularization and Approximations of Solutions of Ill-Posed Operator Equations. In: Proceedings of the 1972 Army Numerical Analysis Conf., Edgewood, MD, pp. 163–181 (1972)

  • Nashed, M.Z.: Approximate regularized solutions to improperly posed linear integral and operator equations. In: Colton, D.L., Gilbert, R.P. (eds.) Constructive and Computational Methods for Differential and Integral Equations, vol. 430, pp. 289–322. Springer, New York (1974)

    Chapter  Google Scholar 

  • Nashed, M.Z. (ed.): Generalized Inverses and Applications. Academic Press, New York, San Francisco, London (1976a)

  • Nashed, M.Z.: Aspects of generalized inverses in analysis and regularization. In: Nashed, M.Z. (ed.) Generalized Inverses and Applications. pp. 193–244, Academic Press, New York (1976b)

  • Nashed, M.Z.: Perturbations and approximation for generalized inverses and linear operators. In: Nashed, M.Z. (ed.) Generalized Inverses and Applications. pp. 325–396, Academic Press, New York, San Francisco, London (1976c)

  • Nashed, M.Z.: On moment-discretization and least squares solutions of linear integration equations of the first kind. J. Math. Anal. Appl. 53, 359–366 (1976d)

    Article  MathSciNet  MATH  Google Scholar 

  • Nashed, M.Z.: Regularization and approximation of ill-posed problems in system theory. In: Meyer, G.G.L., Westgate, C.R. (eds.) Proceedings of the 1979 Conference on Information Sciences and Systems. pp. 568–575, The Johns Hopkins University, New York (1979)

  • Nashed, M.Z.: New applications of generalized inverses in system and control theory. In: Thomas, J.B. (ed.) Proceedings of the 1980 Conferences on Information Sciences and Systems. pp. 353–358. Princeton. NJ, Princeton (1980)

  • Nashed, M.Z.: Continuous and semicontinuous analogous of iterative method of cimmino and kaczmarz with applications to the inverse radon transform. In: Herman, G.T., Natterer, F. (eds.) Mathematical Aspects of Computerized Tomography, pp. 160–178. Springer, New York (1981a)

    Chapter  Google Scholar 

  • Nashed, M.Z.: Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory. IEEE Trans. Antennas Propag. 29, 220–231 (1981b)

    Article  MathSciNet  MATH  Google Scholar 

  • Nashed, M.Z.: A new approach to classification and regularization of ill-posed operator equations. In: Engl, H., Groetsch, C.W. (eds.) Inverse and Ill-Posed Problems, Band 4, Notes and Reports in Mathematics and Science and Engineering. Academic Press, Boston (1987a)

    Google Scholar 

  • Nashed, M.Z.: Inner, outer, and generalized inverses in banach and Hilbert spaces. Numer. Funct. Anal. Optim. 9, 261–326 (1987b)

    Article  MathSciNet  MATH  Google Scholar 

  • Nashed, M.Z.: Inverse problems, moment problems and signal processing: un menage a trois, mathematics in science and technology. In: Siddiqi, A.H., Singh, R.C. Manchanda, P. (eds.) Mathematical Models, Methods, and Applications. pp. 1–19, World Scientific, New Jersey (2010)

  • Nashed, M.Z., Engl, H.W.: Random generalized inverses and approximate solution of random operator equations. In: Bharucha-Reid, A.T. (ed.) Approximate Solution of Random Equations, pp. 149–210. North Holland, New York (1979)

    MATH  Google Scholar 

  • Nashed, M.Z., Lin, F.: On nonlinear ill-posed problems ii: monotone operator equaions and monotone variational inequalities. In: Kartsatos, A. (ed.) Theory and Applications of Nonlinear Operators of Monotone and Assertive Type, pp. 223–240. Marcel Dekker, New York (1996)

    Google Scholar 

  • Nashed, M.Z., Scherzer, O.: Stable approximation of nondifferentiable optimization problems with variational inequalities. Contemp. Math. 204, 155–170 (1997a)

    Article  MathSciNet  MATH  Google Scholar 

  • Nashed, M.Z., Scherzer, O.: Stable approximation of a minimal surface problem with variational inequalities. Abst. Appl. Anal. 2, 137–161 (1997b)

    Article  MathSciNet  MATH  Google Scholar 

  • Nashed, M.Z., Scherzer, O. (Eds.): Inverse Problems, Image Analysis and Medical Imaging. Contemporary Mathematics, vol. 313, American Mathematical Society, Providence, RI (2002)

  • Nashed, M.Z., Votruba, F.G.: A unified operator theory of generalized inverses. In: Nashed, M.Z. (ed.) Generalized Inverses und Applications, pp. 1–109. Academic Press, New York (1976)

    MATH  Google Scholar 

  • Nashed, M.Z., Wahba, G.: Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations. SIAM J. Math. Anal. 5, 974–987 (1974a)

    Article  MathSciNet  MATH  Google Scholar 

  • Nashed, M.Z., Wahba, G.: Approximate regularized pseudosolution of liner operator equations when the data-vector is not in the range of the operator. Bull. Am. Math. Soc. 80, 1213–1218 (1974b)

    Article  MATH  Google Scholar 

  • Nashed, M.Z., Wahba, G.: Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind. Math. Comput. 28, 69–80 (1974c)

    Article  MathSciNet  MATH  Google Scholar 

  • Natanson, I.P.: Constructive Function Theory. Frederick Ungar Publ. Co., New York (1965)

    MATH  Google Scholar 

  • Natterer, F.: The finite element method for ill-posed problems. RAIRO Anal. Numer. 11, 271–278 (1977a)

    Article  MathSciNet  MATH  Google Scholar 

  • Natterer, F.: Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer. Math. 28, 329–341 (1977b)

    Article  MathSciNet  MATH  Google Scholar 

  • Natterer, F.: Error bounds for Tikhonov regularization in Hilbert scales. Appl. Anal. 18, 29–37 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Neubauer, A.: On converse and saturation results for Tikhonov regularization of linear ill-posed problems. SIAM J. Numer. Anal. 34, 517–527 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Novikoff, P.: Sur le problème inverse du potentiel. C. R. Acad. Sci. l’URSS 18, 165–168 (1938)

    MATH  Google Scholar 

  • Ortega, J.M., Rheinboldt, W.C.: On discretization and differentiation of operators with applications to Newton’s method. SIAM J. Numer. Anal. 3, 143–156 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  • Parker, R.L.: The theory of ideal bodies for gravity interpretation. Geophys. J. R. Astr. Soc. 42, 315–334 (1975)

    Article  Google Scholar 

  • Payne, L.E.: Improperly Posed Problems in Partial Differential Equations. SIAM Publications, Philadelphia (1975)

    Book  MATH  Google Scholar 

  • Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406–413 (1955)

    Article  MATH  Google Scholar 

  • Penrose, R.: On best approximate solutions of linear matrix equations. Proc. Camb. Philos. Soc. 25, 17–19 (1956)

    Article  MATH  Google Scholar 

  • Pereverzev, S.V., Schock, E.: On the adaptive selection of the parameter in regularization of ill-posed problems. SIAM J. Numer. Anal. 43, 2060–2076 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Perry, W.L.: On the Bojarski–Lewis inverse scattering method. IEEE Trans. Antennas Propag. 6, 826–829 (1974)

    Article  MathSciNet  Google Scholar 

  • Perry, W.L.: Approximate solution of inverse problems with piecewise continuous solution. Radio Sci. 12, 634–642 (1977)

    Article  MathSciNet  Google Scholar 

  • Petryshyn, W.V.: On generalilzed inverses and uniform convergence of \((I-\beta K)^n\) with applications to iterative methods. J. Math. Anal. Appl. 18, 417–439 (1967). MR 34, 8191

    Article  MathSciNet  MATH  Google Scholar 

  • Petrov, G.I.: Appliation of Galerkin’s method to a problem of the stability of the flow of a viscous fluid (in Russian). Priklad. Mate. Mekh. 4, 3–12 (1940)

    Google Scholar 

  • Phillips, B.L.: A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Math. 9, 84–97 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Plackett, R.L.: An historical note on the method of least squares. Biometrika 36, 458–460 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  • Plato, R.: Optimal algorithms for linear ill-posed problems yielding regularization methods. Numer. Funct. Anal. Optim. 11, 111–118 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Rado, R.: Note on generalized inverses of matrices. Proc. Camb. Philos. Soc. 52, 600–601 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York (1971)

    MATH  Google Scholar 

  • Rayleigh, L.: The Theory of Sound. Oxdord University Press, Oxdord (1896)

    MATH  Google Scholar 

  • Reid, W.T.: Generalized inverses of differential and integral operators. Theory and applications of generalized inverses of matrices (T.L. Boullion and P.L. Odell Eds.). In: Symposium Proceedings, Texas Tech University Mathematics Series, Vol. 4., Lubbock; Texas (1968)

  • Ribiere, G.: Regularisation d’operateurs. Rev. Inf. Rech. Oper. 1, 57–79 (1967)

    MathSciNet  MATH  Google Scholar 

  • Richter, G.R.: Numerical solution of integral equations of the first kind with non-smooth kernels. SIAM J. Numer. Anal. 15, 511–522 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, D.W.: Gauss and generalized inverses. Hist. Math. 7, 118–125 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Rieder, A.: Keine Probleme mit Inversen Problemen. Vieweg, Braunschweig (2003)

    Book  MATH  Google Scholar 

  • Ritz, W.: Über lineare Funktionalgleichungchungen. Acta Math. 41, 71–98 (1918)

    Google Scholar 

  • Rudin, L.I.: Functional Analysis. Mc Graw-Hill, New York (1973)

    MATH  Google Scholar 

  • Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Rummel, R., Balmino, G., Johannessen, J., Visser, P., Woodworth, P.: Dedicated gravity field missions—principles and aims. J. Geodyn. 33, 3–20 (2002)

    Article  Google Scholar 

  • Saitoh, S.: Theory of Reproducing Kernels and its Applications. Longman, New York (1988)

    MATH  Google Scholar 

  • Scherzer, O. (ed.): Handbook of Mathematical Methods in Imaging. Springer, New York (2015)

  • Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Applied Mathematical Sciences. Springer, New York (2009)

    MATH  Google Scholar 

  • Schuster, T.: The Method of Approximate Inverse: Theory and Applications, Lecture Notes in Mathematics. Springer, Berlin (2007)

    Book  Google Scholar 

  • Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.S.: Regularization Methods in Banach Spaces, Radon Series on Computational and Applied Mathematics, 10. De Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  • Seidmann, T.I.: Non-convergence results for the application of least squares estimation onto ill-posed problems. J. Optim. Theory Appl. 30, 535–547 (1980)

    Article  MathSciNet  Google Scholar 

  • Shinozaki, S.M., Ranabe, K.: Numerical algorithms for the Moore–Penrose inverse of a matrix: direct methods. Ann. Inst. Stat. Math. 24, 193–203 (1972)

    Article  MathSciNet  Google Scholar 

  • Showalter, D.W., Ben-Israel, B.: Representation and computation of the generalized inverse of a bounded linear operator between two Hilbert spaces. Atti Accad. Naz. Kincei Rend. Cl. Sci, Fis. Mat. Natur. (8) 48, 184–194 (1970)

    MATH  Google Scholar 

  • Shure, L., Parker, R.L., Backus, G.E.: Harmonic splines for geomagnetic modelling. Phys. Earth Planet. Inter. 28, 215–229 (1982)

    Article  Google Scholar 

  • Siegel, C.L.: Über die analytische Theorie der quadratischen Formen. III. Ann. Math. 38, 212–291 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  • Söberg, L.: Station adjustment of derictions using generalized inverses. In: Borre, K., Welsch, W. (Eds.), International Federation of Surveyors—FIG—Proceedings Survey Control Networks Meeting of Study Group 5B, 7th - 9th July, 1982, Aalborg University Centre, Denmark. Schriftenreihe des Wissenschaftlichen Studiengangs Vermessungswesen der Hochschule der Bundeswehr München, Heft 7, pp. 381–399 (1982)

  • Song, M.: Regularization-Projection Methods and Finite Element Approximations for Ill-Posed Linear Operator Equations. Ph.D. Thesis, University Michigan (1978)

  • Strand, O.N.: Theory and methods related to the singular function expansion and Landweber’s iteration for integral equations of the first kind. SIAM J. Numer. Anal. 11, 798–825 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Sudakov, V.N., Khalfin, L.A.: A Statistical Approach to the Correctness of the Problems of Mathematical Physics. Dokl Akad Nauk SSSR 157-1058-1060 (1964)

  • Szegö, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23. American Mathematical Society, Providence (1959)

    Google Scholar 

  • Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV, \(L^2\)) decompositions. Multiscale Model. Simul. 2, 554–579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, A.E., Lay, D.: Functional Analysis. Wiley, New York (1979)

    Google Scholar 

  • Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 195–198 (1943)

    MathSciNet  Google Scholar 

  • Tikhonov, A.N.: On the solution of incorrectly formulated problems and the regularization method. Dokl. Akad. Nauk SSSR 151, 501–504 (1963)

    MathSciNet  MATH  Google Scholar 

  • Tikhonov, A.N.: On methods of solving incorrect problems. Am. Math. Soc. Transl. 2, 222–224 (1968)

    Google Scholar 

  • Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, Washington, DC (1977)

    MATH  Google Scholar 

  • Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  • Tikhonov, A.N., Goncharsky, A., Stepanov, V., Yagola, A.G.: Nonlinear Ill-Posed Problems, Vol. 1, 2, Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1998). (Translated from the Russian)

    Google Scholar 

  • Twomey, S.: On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature. J. Assoc. Comput. Mach. 10, 97–101 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Vainberg, M.M.: Variational Method and Method of Monotone Operators. Wiley, New York (1973)

    MATH  Google Scholar 

  • Varah, J.: On the numerical solution of ill-conditioned linear systems with applications to ill-posed problems. SIAM J. Numer. Anal. 10, 257–267 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Vese, L.A., Le Guyader, C.: Variational Methods in Image Processing. Chapman & Hall/CRC Mathematical and Computational Imaging Sciences. CRC Press, Boca Raton (2016)

    Google Scholar 

  • Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  • Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Wahba, G.: Convergence rates of certain approximate solutions ot fredholm integral equations of the first kind. J. Approx. Theory 7, 167–185 (1973)

    Article  MATH  Google Scholar 

  • Weiner, H.W. (ed.): Reproducing Kernel Hilbert Spaces. Applications in Statistical Signal Procssing. Hutchinson Ross, Stroudsburg, PA (1982)

  • Werner, J.: Numerische Mathematik 1. Vieweg Studium, Braunschweig (1991)

    Google Scholar 

  • Wolf, H.: Ausgleichungsrechnung. Formeln zur praktischen Anwendung. Dümmler Verlag, Bonn (1975)

    MATH  Google Scholar 

  • Xia, X.G., Nashed, M.Z.: The Backus–Gilbert method for signals in reproducing Hilbert spaces and wavelet subspaces. Inverse Prob. 10, 785–804 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, X.G., Nashed, M.Z.: A modified minimum norm solution method for band-limited signal extrapolation with inaccurate data. Inverse Prob. 13, 1641–1661 (1997)

    Article  MATH  Google Scholar 

  • Yao, K.: Applications of reproducing kernel Hilbert spaces–bandlimited signal models. Inf. Control 11, 429–444 (1967)

    Article  MATH  Google Scholar 

  • Yosida, K.: Functional Analysis, 5th edn. Springer, Berlin (1965)

    Book  MATH  Google Scholar 

  • Zhou, L., Li, X., Pan, F.: Gradient-based iterative identification for wiener nonlinear systems with non-uniform sampling. Nonlinear Dyn. 76, 627–634 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zwaan, M.: Approximation of the solution to the moment problem in a Hilbert space. Numer. Funct. Anal. Optim. 11, 601–612 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Zwaan, M.: MRI reconstruction as a moment problem. Math. Methods Appl. Sci. 15, 661–675 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Freeden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freeden, W., Nashed, M.Z. Operator-theoretic and regularization approaches to ill-posed problems. Int J Geomath 9, 1–115 (2018). https://doi.org/10.1007/s13137-017-0100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-017-0100-0

Keywords

Mathematics Subject Classification

Navigation