The complete mitochondrial genome of the hybrid grouper Epinephelus moara (♀)×Epinephelus tukula (♂), and phylogenetic analysis in subfamily Epinephelinae

Abstract

The mitochondrial genome (mitogenome) of hybrid grouper Epinephelus moara (♀)×Epinephelus tukula (♂), a new hybrid progeny, can provide valuable information for analyzing phylogeny and molecular evolution. In this study, the mitogenome was analyzed using PCR amplification and sequenced, then the phylogenetic relationship of E. moara (♀)×E. tukula (♂) and 35 other species were constructed using Maximum Likelihood and Neighbor-Joining methods with the nucleotide sequences of 13 conserved protein-coding genes (PCGs). The complete mitogenome of E. moara (♀)×E. tukula (♂) was 16 695 bp in length, which contained 13 PCGs, 2 rRNA genes, 22 tRNA genes, a replication origin and a control region. The composition and order of these genes were consistent with most other vertebrates. Of the 13 PCGs, 12 PCGs were encoded on the heavy strand, and ND6 was encoded on the light strand. The mitogenome of the E. moara (♀)×E. tukula (♂) had a higher AT nucleotide content, a positive AT-skew and a negative GC-skew. All protein initiation codons were ATG, except for COX and ND4 (GTG), ATP6 (CTG), and ND3 (ATA). ND2, COXII, ND3, ND4 and Cytb had T as the terminating codon, COXIII’s termination codon was TA, and the remaining PCGs of that were TAA. All tRNA genes, except for the lacking DHU-arm of tRNASer(AGN), were predicted to form a typical cloverleaf secondary structure. In addition, sequence similarity analysis (99% identity) and phylogenetic analysis (100% bootstrap value) indicated that the mitochondrial genome was maternally inherited. This study provides mitogenome data for studying genetic, phylogenetic relationships and breeding of grouper.

This is a preview of subscription content, access via your institution.

References

  1. Anderson S, Bankier A T, Barrell B G, et al. 1981. Sequence and organization of the human mitochondrial genome. Nature, 290(5806): 457–465, doi: https://doi.org/10.1038/290457a0

    Article  Google Scholar 

  2. Avise J C. 2009. Phylogeography: retrospect and prospect. Journal of Biogeography, 36(1): 3–15, doi: https://doi.org/10.1111/J.1365-2699.2008.02032.x

    Article  Google Scholar 

  3. Ballard J W O, Whitlock M C. 2004. The incomplete natural history of mitochondria. Molecular Ecology, 13(4): 729–744, doi: https://doi.org/10.1046/j.1365-294X.2003.02063.x

    Article  Google Scholar 

  4. Bibb M J, van Etten R A, Wright C T, et al. 1981. Sequence and gene organization of mouse mitochondrial DNA. Cell, 26(2): 167–180, doi: https://doi.org/10.1016/0092-8674(81)90300-7

    Article  Google Scholar 

  5. Boore J L. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767–1780, doi: https://doi.org/10.1093/nar/27.8.1767

    Article  Google Scholar 

  6. Boore J L, Daehler L L, Brown W M. 1999. Complete sequence, gene arrangement, and genetic code of mitochondrial DNA of the Cephalochordate Branchiostoma floridae (Amphioxus). Molecular Biology and Evolution, 16(3): 410–418, doi: https://doi.org/10.1093/oxfordjournals.molbev.a026122

    Article  Google Scholar 

  7. Brown J R, Beckenbach A T, Smith M J. 1992. Mitochondrial DNA length variation and heteroplasmy in populations of white sturgeon (Acipenser transmontanus). Genetics, 132(1): 221–228

    Article  Google Scholar 

  8. Brown W M, George Jr M, Wilson A C. 1979. Rapid evolution of animal mitochondrial DNA. Proceeding of the National Academy of Sciences of the United States of America, 76(4): 1967–1971, doi: https://doi.org/10.1073/pnas.76.4.1967

    Article  Google Scholar 

  9. Chang Y S, Huang F L, Lo T B. 1994. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. Journal of Molecular Evolution, 38(2): 138–155, doi: https://doi.org/10.1007/BF00166161

    Article  Google Scholar 

  10. Cheng S S, Senoo S, Siddiquee S, et al. 2015. Genetic variation in the mitochondrial genome of the giant grouper Epinephelus lanceolatus (Bloch, 1790) and its application for the identification of broodstock. Aquaculture Reports, 2: 139–143, doi: https://doi.org/10.1016/j.aqrep.2015.09.003

    Article  Google Scholar 

  11. Craig M T, Hastings P A. 2007. A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyological Research, 54(1): 1–17, doi: https://doi.org/10.1007/s10228-006-0367-x

    Article  Google Scholar 

  12. Craig M T, Pondella II D J, Franck J P C, et al. 2001. On the status of the serranid fish genus Epinephelus: evidence for paraphyly based upon 16S rDNA sequence. Molecular Phylogenetics and Evolution, 19(1): 121–130, doi: https://doi.org/10.1006/mpev.2000.0913

    Article  Google Scholar 

  13. DeMarais B D, Dowling T E, Douglas M E, et al. 1992. Origin of Gila seminuda (Teleostei: Cyprinidae) through introgressive hybridization: Implications for evolution and conservation. Proceedings of the National Academy of Sciences of the United States of America, 89(7): 2747–2751, doi: https://doi.org/10.1073/pnas.89.7.2747

    Article  Google Scholar 

  14. Ding Shaoxiong, Zhang Xuan, Guo Feng, et al. 2006. Molecular phylogenetic relationships of China Sea groupers based on cytochrome b gene fragment sequences. Science in China: Series C Life Sciences, 49(3): 235–242, doi: https://doi.org/10.1007/s11427-006-0235-y

    Article  Google Scholar 

  15. Gao Fengtao, Wei Min, Zhu Ying, et al. 2017. Characterization of the complete mitochondrial genome of the hybrid Epinephelus moara ♀×Epinephelus lanceolattus♂, and phylogenetic analysis in subfamily epinephelinae. Journal of Ocean University of China, 16(3): 555–563, doi: https://doi.org/10.1007/s11802-017-3202-2

    Article  Google Scholar 

  16. Glamuzina B, Glavić N, Skaramuca B, et al. 2001. Early development of the hybrid Epinephelus costae ♀×E. marginatus ♂. Aquaculture, 198(1–2): 55–61

    Article  Google Scholar 

  17. Guo Xinhong, Liu Shaojun, Zhang Chun, et al. 2004. Comparative and evolutionary analysis of the cytochrome b sequences in cyprinids with different ploidy levels derived from crosses. Genetica, 121(3): 295–301, doi: https://doi.org/10.1023/B:GENE.0000039847.82917.c4

    Article  Google Scholar 

  18. Heemstra P C, Randall J E. 1993. Groupers of the World (Family Serranidae, subfamily Epinephelinae): An Annotated and Illustrated Catalogue of the Grouper, Rockcod, Hind, Coral Grouper and Lyretail Species Known to Date. Rome: Food and Agriculture Organization of the United Nations, 1–10

    Google Scholar 

  19. Hoarau G, Holla S, Lescasse R, et al. 2002. Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus. Molecular Biology and Evolution, 19(12): 2261–2264, doi: https://doi.org/10.1093/oxfordjournals.molbev.a004049

    Article  Google Scholar 

  20. James C M, Al-Thobaiti S A, Rasem B M, et al. 1999. Potential of grouper hybrid (Epinephelus fuscoguttatus×E. polyphekadion) for aquaculture. Naga, The World Fish Center, 22(1): 19–23

    Google Scholar 

  21. Lanfear R, Calcott B, Ho S Y W, et al. 2012. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6): 1695–1701, doi: https://doi.org/10.1093/molbev/mss020

    Article  Google Scholar 

  22. Liu Lili, Xie Hongbing, Yu Qifang, et al. 2016. Determination and analysis of the complete mitochondrial genome sequence of taoyuan chicken. Mitochondrial DNA Part A, 27(1): 371–372, doi: https://doi.org/10.3109/19401736.2014.895991

    Article  Google Scholar 

  23. Liu M, Li J L, Ding S X, et al. 2013. Epinephelus moara: a valid species of the family Epinephelidae (Pisces: Perciformes). Journal of Fish Biology, 82(5): 1684–1699, doi: https://doi.org/10.1111/jfb.12112

    Article  Google Scholar 

  24. Lowe T M, Chan P P. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44(W1): W54–W57, doi: https://doi.org/10.1093/nar/gkw413

    Article  Google Scholar 

  25. Ludwig A, May B, Debus L, et al. 2000. Heteroplasmy in the mtDNA control region of sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics, 156(4): 1933–1947

    Google Scholar 

  26. Meusel M S, Moritz R F A. 1993. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis Mellifera L.) eggs. Current Genetics, 24(6): 539–543, doi: https://doi.org/10.1007/BF00351719

    Article  Google Scholar 

  27. Moritz C, Dowling T E, Brown W M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269–292, doi: https://doi.org/10.1146/annurev.es.18.110187.001413

    Article  Google Scholar 

  28. Oh B S, Oh D J, Jung M M, et al. 2012. Complete mitochondrial genome of the longtooth grouper Epinephelus bruneus (perciformes, serranidae). Mitochondrial DNA, 23(2): 137–138, doi: https://doi.org/10.3109/19401736.2012.660928

    Article  Google Scholar 

  29. Peng Rui, Zeng Bo, Meng Xiuxiang, et al. 2007. The complete mitochondrial genome and phylogenetic analysis of the giant panda (Ailuropoda melanoleuca). Gene, 397(1–2): 76–83, doi: https://doi.org/10.1016/j.gene.2007.04.009

    Article  Google Scholar 

  30. Perna N T, Kocher T D. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41(3): 353–358, doi: https://doi.org/10.1007/BF01215182

    Article  Google Scholar 

  31. Qu Meng, Zhang Xiang, Ding Shaoxiong. 2012. Complete mitochondrial genome of yellow grouper Epinephelus awoara (Perciformes, Epinephelidae). Mitochondrial DNA, 23(6): 432–434, doi: https://doi.org/10.3109/19401736.2012.710217

    Article  Google Scholar 

  32. Stanton D J, Daehler L L, Moritz C C, et al. 1994. Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics, 137(1): 233–241

    Article  Google Scholar 

  33. Stemshorn K C, Reed F A, Nolte A W, et al. 2011. Rapid formation of distinct hybrid lineages after secondary contact of two fish species (Cottus sp.). Molecular Ecology, 20(7): 1475–1491, doi: https://doi.org/10.1111/j.1365-294X.2010.04997.x

    Article  Google Scholar 

  34. Stepien C A, Kocher T D. 1997. Molecules and morphology in studies of fish evolution. In: Kocher T D, Stepien C A, eds. Molecular Systematics of Fishes. Amsterdam: Elsevier, 1–11

    Google Scholar 

  35. Tian Yongsheng, Tang Jing, Ma Wenhui, et al. 2019. Development and growth of hybrid offspring of brown grouper Epinephelus fuscoguttatus (♀) × blue speckled grouper Epinephelus tulcula (♂) using cryopreserved sperm. Progress in Fishery Sciences (in Chinese), 40(6): 36–47

    Google Scholar 

  36. Wang Yuguo. 2017. Natural hybridization and speciation. Biodiversity Science (in Chinese), 25(6): 565–576, doi: https://doi.org/10.17520/biods.2017041

    Article  Google Scholar 

  37. Zhao X, Li N, Guo W, et al. 2004. Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries). Heredity, 93(4): 399–403, doi: https://doi.org/10.1038/sj.hdy.6800516

    Article  Google Scholar 

  38. Zhou Hanlin, Yang Sen, Gao Chuan, et al. 2012. Analysis of genetic variability of mtDNA COI genes between two grouper hybrids and their parents. Journal of Tropical Organisms (in Chinese), 3(1): 1–10

    Google Scholar 

  39. Zhu Kecheng, Huang Guiju, Zhang Dongling, et al. 2016. The complete nucleotide sequence of malabar grouper (Epinephelus malabaricus) mitochondrial genome. DNA Sequence, 27(3): 2087–2088

    Google Scholar 

  40. Zhu Zeyuan, Yue Genhua. 2008. The complete mitochondrial genome of red grouper Plectropomus leopardus and its applications in identification of grouper species. Aquaculture, 276(1–4): 44–49, doi: https://doi.org/10.1016/j.aquaculture.2008.02.008

    Article  Google Scholar 

  41. Zhuang Xuan, Ding Shaoxiong, Wang Jun, et al. 2010. A set of 16 consensus primer pairs amplifying the complete mitochondrial genomes of orange-spotted grouper (Epinephelus coioides) and Hong Kong grouper (Epinephelus akaara). Molecular Ecology Resources, 9(6): 1551–1553

    Article  Google Scholar 

  42. Zhuang Xuan, Qu Meng, Zhang Xiang, et al. 2013. A comprehensive description and evolutionary analysis of 22 grouper (Perciformes, Epinephelidae) mitochondrial genomes with emphasis on two novel genome organizations. PLoS One, 8(8): e73561, doi: https://doi.org/10.1371/journal.pone.0073561

    Article  Google Scholar 

  43. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13): 3406–3415, doi: https://doi.org/10.1093/nar/gkg595

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Tian.

Additional information

Foundation item: The Key Research and Development Program of Shandong Province under contact No. 2019GHY112063; the Breeding Project of Shandong Province under contract No. 2019LZGC020; the Central Public-interest Scientific Institution Basal Research Fund Chinese Academy of Fishery Sciences under contract Nos 2020XT0601, 2020TD19 and 2020TD25; the Yellow Sea Fisheries Research Institute Research Fees under contract Nos 20603022019002 and 20603022020015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tian, Y., Cheng, M. et al. The complete mitochondrial genome of the hybrid grouper Epinephelus moara (♀)×Epinephelus tukula (♂), and phylogenetic analysis in subfamily Epinephelinae. Acta Oceanol. Sin. 39, 65–75 (2020). https://doi.org/10.1007/s13131-020-1689-7

Download citation

Key words

  • Epinephelus moara (♀)×Epinephelus tukula (♀)
  • Epinephelus moara
  • Epinephelus tukula
  • mitochondrial genome
  • phylogeny