Seasonal variability of mesoscale eddies in the Banda Sea inferred from altimeter data

Abstract

Using the mesoscale eddy trajectory atlas product derived from satellite altimeter data from 1993 to 2016, this study analyzes statistical characteristics and seasonal variability of mesoscale eddies in the Banda Sea of the Indonesian seas. The results show that there were 147 mesoscale eddies that occurred in the Banda Sea, of which 137 eddies were locally generated and 10 originated from outside. The total numbers of cyclonic eddies (CEs, clockwise) and anticyclonic eddies (AEs, anticlockwise) are 76 and 71, respectively. Seasonally, the number of CEs (AEs) is twice larger than the number of AEs (CEs) in winter (summer). In winter, CEs are distributed in the southern and AEs in the northern basins, respectively, but the opposite thing occurs in summer, i.e., the polarities of mesoscale eddies observed at the same location reverse seasonally. The mechanisms of polarity distribution reversal (PDR) of mesoscale eddies are examined with reanalysis data of ocean currents and winds. The results indicate that the basin-scale vorticity, wind stress curl, and the meridional shear of zonal current reverse seasonally, which are favorable to the PDR of mesoscale eddies. The possible generation mechanisms of mesoscale eddies include direct wind forcing, barotropic and baroclinic instabilities, of which the direct wind forcing should play the dominant role.

This is a preview of subscription content, access via your institution.

References

  1. Benitez-Nelson C R, Bidigare R R, Dickey T D, et al. 2007. Mesoscale eddies drive increased silica export in the Subtropical Pacific Ocean. Science, 316(5827): 1017–1021, doi: https://doi.org/10.1126/science.1136221

    Article  Google Scholar 

  2. Broecker W S. 1991. The great ocean conveyor. Oceanography, 4(2): 79–89, doi: https://doi.org/10.5670/oceanog.1991.07

    Article  Google Scholar 

  3. Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216, doi: https://doi.org/10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  4. Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. Journal of Geophysical Research: Oceans, 117(C5): C05021

    Article  Google Scholar 

  5. Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116(C6): C06018

    Google Scholar 

  6. Chu Xiaoqing, Dong Changming, Qi Yiquan. 2017. The influence of ENSO on an oceanic eddy pair in the South China Sea. Journal of Geophysical Research: Oceans, 122(3): 1643–1652, doi: https://doi.org/10.1002/2016JC012642

    Google Scholar 

  7. Chu Xiaoqing, Xue Huijie, Qi Yiquan, et al. 2014. An exceptional anticyclonic eddy in the South China Sea in 2010. Journal of Geophysical Research: Oceans, 119(2): 881–897, doi: https://doi.org/10.1002/2013JC009314

    Google Scholar 

  8. Du Yan, Fang Guohong. 2011. Progress on the study of the Indonesian seas and Indonesian Throughflow (in Chinese). Advances in Earth Sciences, 26(11): 1131–1142

    Google Scholar 

  9. Feng Meng, Wijffels S. 2002. Intraseasonal variability in the South Equatorial Current of the East Indian Ocean. Journal of Physical Oceanography, 32(1): 265–277, doi: https://doi.org/10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2

    Article  Google Scholar 

  10. Frankignoul C, Müller P. 1979. Quasi-geostrophic response of an infinite β-plane ocean to stochastic forcing by the atmosphere. Journal of Physical Oceanography, 9(1): 104–127, doi: https://doi.org/10.1175/1520-0485(1979)009<0104:QGROAI>2.0.CO;2

    Article  Google Scholar 

  11. Frenger L, Münnich M, Gruber N. 2018. Imprint of Southern Ocean mesoscale eddies on chlorophyll. Biogeosciences, 15(15): 4781–4798, doi: https://doi.org/10.5194/bg-15-4781-2018

    Article  Google Scholar 

  12. Gill A E, Green J S A, Simmons A J. 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Research and Oceanographic Abstracts, 21(7): 499–528, doi: https://doi.org/10.1016/0011-7471(74)90010-2

    Article  Google Scholar 

  13. Gordon A L. 2005. Oceanography of the Indonesian seas and their throughflow. Oceanography, 18(4): 14–27, doi: https://doi.org/10.5670/oceanog.2005.01

    Article  Google Scholar 

  14. Gordon A L, Susanto R D. 2001. Banda Sea surface-layer divergence. Ocean Dynamics, 52(1): 2–10, doi: https://doi.org/10.1007/s10236-001-8172-6

    Article  Google Scholar 

  15. Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. 2011. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05016

    Article  Google Scholar 

  16. Hu Jianyu, Zheng Quanan, Sun Zhenyu, et al. 2012. Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. Journal of Geophysical Research: Oceans, 117(C3): C03010

    Article  Google Scholar 

  17. Li Jiaxun, Zhang Ren, Jin Baogang, et al. 2011. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Science, 7(5): 661–669, doi: https://doi.org/10.5194/os-7-661-2011

    Article  Google Scholar 

  18. Li Cheng, Zhang Zhiwei, Zhao Wei, et al. 2017. A statistical study on the subthermocline submesoscale eddies in the northwestern Pacific Ocean based on Argo data. Journal of Geophysical Research: Oceans, 122(5): 3586–3598, doi: https://doi.org/10.1002/2016JC012561

    Google Scholar 

  19. Liang Linlin, Xue Huijie, Shu Yeqiang. 2019. The Indonesian Throughflow and the circulation in the Banda Sea: A modeling study. Journal of Geophysical Research: Oceans, 124(5): 3089–3106, doi: https://doi.org/10.1029/2018JC014926

    Google Scholar 

  20. Lin Pengfei. 2005. Statistical analyses on mesoscale eddies in the South China Sea and the northwest Pacific (in Chinese)[dissertation]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences

    Google Scholar 

  21. Lin Hongyang, Hu Jianyu, Zheng Quanan. 2012. Satellite altimeter data analysis of the South China Sea and the northwest Pacific Ocean: Statistical features of oceanic mesoscale eddies. Journal of Oceanography in Taiwan Strait (in Chinese), 31(1): 105–113

    Google Scholar 

  22. McDowell S E, Rossby H T. 1978. Mediterranean water: An intense mesoscale eddy off the Bahamas. Science, 202(4372): 1085–1087, doi: https://doi.org/10.1126/science.202.4372.1085

    Article  Google Scholar 

  23. McGillicuddy D J Jr. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annual Review of Marine Science, 8: 125–159, doi: https://doi.org/10.1146/annurev-marine-010814-015606

    Article  Google Scholar 

  24. Nan Feng, Yu Fei, Ren Qiang, et al. 2019. Isopycnal mixing of inter-hemispheric intermediate waters by subthermocline eddies east of the philippines. Scientific Reports, 9: 2957, doi: https://doi.org/10.1038/s41598-019-39596-2

    Article  Google Scholar 

  25. Pedlosky J. 1987. Geophysical Fluid Dynamics. 2nd ed. New York: Springer-Verlag, 490–623

    Google Scholar 

  26. Qiu Bo, Chen Shuiming. 2010. Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography, 40(1): 213–225, doi: https://doi.org/10.1175/2009JPO4285.1

    Article  Google Scholar 

  27. Qiu Bo, Chen Shuiming, Kessler W S. 2009. Source of the 70-day mesoscale eddy variability in the Coral Sea and the North Fiji Basin. Journal of Physical Oceanography, 39(2): 404–420, doi: https://doi.org/10.1175/2008JPO3988.1

    Article  Google Scholar 

  28. Qiu Chunhua, Mao Huabin, Liu Hailong, et al. 2019. Deformation of a warm eddy in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(8): 5551–5564, doi: https://doi.org/10.1029/2019JC015288

    Google Scholar 

  29. Richardson P L. 1983. Eddy kinetic energy in the North Atlantic from surface drifters. Journal of Geophysical Research: Oceans, 88(C7): 4355–4367, doi: https://doi.org/10.1029/JC088iC07p04355

    Article  Google Scholar 

  30. Schlax M G, Chelton D B. 2016. The “growing method” of eddy identification and tracking in two and three dimensions. Oregon: College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, 1: 8

    Google Scholar 

  31. Shi Yunlong, Yang Dezhou, Feng Xingru, et al. 2018. One possible mechanism for eddy distribution in zonal current with meridional shear. Scientific Reports, 8: 10106, doi: https://doi.org/10.1038/s41598-018-28465-z

    Article  Google Scholar 

  32. Sprintall J, Gordon A L, Koch-Larrouy A, et al. 2014. The Indonesian seas and their role in the coupled ocean-climate system. Nature Geoscience, 7(7): 487–492, doi: https://doi.org/10.1038/ngeo2188

    Article  Google Scholar 

  33. Talley L D, Sprintall J. 2005. Deep expression of the Indonesian Throughflow: Indonesian intermediate water in the South Equatorial Current. Journal of Geophysical Research: Oceans, 110(C10): C10009, doi: https://doi.org/10.1029/2004JC002826

    Article  Google Scholar 

  34. Van Aken H M, Brodjonegoro I S, Jaya I. 2009. The deep-water motion through the Lifamatola Passage and its contribution to the Indonesian throughflow. Deep Sea Research Part I: Oceanographic Research Papers, 56(8): 1203–1216, doi: https://doi.org/10.1016/j.dsr.2009.02.001

    Article  Google Scholar 

  35. Wang Guihua, Su Jilan, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121, doi: https://doi.org/10.1029/2003GL018532

    Article  Google Scholar 

  36. Wang Guihua, Su Jilan, Qi Yiquan. 2005. Advances in studying mesoscale eddies in South China Sea. Advances in Earth Sciences (in Chinese), 20(8): 882–886

    Google Scholar 

  37. Wang Liwei, Wang Yonggang, Xu Tengfei, et al. 2016a. Seasonal and interannual variation in sea level height in the Banda Sea based on satellite altimeter data. Oceanologia et Limnologia Sinica (in Chinese), 47(4): 719–729

    Google Scholar 

  38. Wang Xin, Wang Dongxiao, Zhang Chidong, et al. 2016b. Introduction to maritime continent observation plan and progress in China. Acta Meteorologica Sinica (in Chinese), 74(4): 653–654

    Google Scholar 

  39. Wang Lu, Xie Lingling, Zhou Lei, et al. 2018. Climatological analysis of water mass sources of Indonesia Throughflow in the Molukka Sea and Halmahera Sea. Haiyang Xuebao (in Chinese), 40(3): 1–15

    Google Scholar 

  40. Wang Lu, Zhou Lei, Xie Lingling, et al. 2019. Seasonal and interannual variability of water mass sources of Indonesian Throughflow in the Maluku Sea and the Halmahera Sea. Acta Oceanologica Sinica, 38(4): 58–71, doi: https://doi.org/10.1007/s13131-019-1413-7

    Article  Google Scholar 

  41. Wu C R, Chiang T L. 2007. Mesoscale eddies in the northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1557–1588

    Google Scholar 

  42. Xie Lingling, Zheng Quanan, Tian Jiwei, et al. 2016. Cruise observation of Rossby waves with finite wavelengths propagating from the Pacific to the South China Sea. Journal of Physical Oceanography, 46(10): 2897–2913, doi: https://doi.org/10.1175/JPO-D-16-0071.1

    Article  Google Scholar 

  43. Xie Lingling, Zheng Quanan, Zhang Shuwen, et al. 2018. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry. International Journal of Remote Sensing, 39(2): 399–417, doi: https://doi.org/10.1080/01431161.2017.1384591

    Article  Google Scholar 

  44. Xiu Peng, Chai Fei, Shi Lei, et al. 2010. A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research: Oceans, 115(C3): C03012

    Article  Google Scholar 

  45. Xu Lixiao, Li Peiliang, Xie Shangping, et al. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7: 10505, doi: https://doi.org/10.1038/ncomms10505

    Article  Google Scholar 

  46. Xu Anqi, Yu Fei, Nan Feng. 2019. Study of subsurface eddy properties in northwestern Pacific Ocean based on an eddy-resolving OGCM. Ocean Dynamics, 69(4): 463–474, doi: https://doi.org/10.1007/s10236-019-01255-5

    Article  Google Scholar 

  47. Yang Qingxuan, Nikurashin M, Sasaki H, et al. 2019. Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea. Scientific Reports, 9: 556, doi: https://doi.org/10.1038/s41598-018-36610-x

    Article  Google Scholar 

  48. Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925, doi: https://doi.org/10.1002/jgrc.20164

    Google Scholar 

  49. Zhang Zhengguang. 2014. Mesoscale eddy (in Chinese)[dissertation]. Qingdao: Ocean University of China

    Google Scholar 

  50. Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324, doi: https://doi.org/10.1126/science.1252418

    Article  Google Scholar 

  51. Zhang Zhiwei, Li Peiliang, Xu Lixiao, et al. 2015. Subthermocline eddies observed by rapid-sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014. Geophysical Research Letters, 42(15): 6438–6445, doi: https://doi.org/10.1002/2015GL064601

    Article  Google Scholar 

  52. Zhang Zhiwei, Liu Zhiyu, Richards K, et al. 2019. Elevated diapycnal mixing by a subthermocline eddy in the western equatorial Pacific. Geophysical Research Letters, 46(5): 2628–2636, doi: https://doi.org/10.1029/2018GL081512

    Article  Google Scholar 

  53. Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349, doi: https://doi.org/10.1038/srep24349

    Article  Google Scholar 

  54. Zhang Zhiwei, Zhao Wei, Qiu Bo, et al. 2017. Anticyclonic eddy sheddings from Kuroshio Loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47(6): 1243–1259, doi: https://doi.org/10.1175/JPO-D-16-0185.1

    Article  Google Scholar 

  55. Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research: Oceans, 118(12): 6479–6494, doi: https://doi.org/10.1002/2013JC008994

    Google Scholar 

  56. Zheng Quanan, Ho C R, Xie Lingling, et al. 2019. A case study of a Kuroshio main path cut-off event and impacts on the South China Sea in fall-winter 2013–2014. Acta Oceanologica Sinica, 38(4): 12–19, doi: https://doi.org/10.1007/s13131-019-1411-9

    Article  Google Scholar 

  57. Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. 2017. Progress in research of mesoscale eddies in the South China Sea. Advances in Marine Science (in Chinese), 35(2): 131–158

    Google Scholar 

  58. Zheng Congcong, Yang Yuxing, Wang Faming. 2014. Spatial-temporal features of eddies in the North Pacific. Marine Sciences (in Chinese), 38(10): 105–112

    Google Scholar 

  59. Zheng Quanan, Yuan Yeli. 1989. Study on the analytical model of decay of mesoscale eddy on the continental shelf. Science China, 32(9): 1135–1143

    Google Scholar 

Download references

Acknowledgements

The mesoscale eddy trajectory atlas product is downloaded from Archiving Validation and Interpretation of Satellite Data in Oceanography (AVISO), the Centre National d’Ettudes Spatiales (CNES) of France (https://www.aviso.altimetry.fr). The Simple Ocean Data Assimilation (SODA v3.3.1) reanalysis monthly average data are downloaded from (http://www.atmos.umd.edu/~ocean/index_files/soda3.3.1_mn_download.htm). The ERA-Interim numerical forecast reanalyzed monthly average 10 m “winds are downloaded from the European Centre for Medium-Range Weather Forecasts (ECMWF) (https://apps.ecmwvf.int/datasets/data/interim-full-moda/levtype=sfc/). We thank Hailong Liu, Pengfei Lin and Hao Chen for the discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lingling Xie.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41776034; the Special Project of Global Change and Air and Sea Interaction under contract Nos GASI-IPOVAI-01-02 and GASI-02-SCS-YGST2-02; the Guangdong Province First-Class Discipline Plan under contract Nos CYL231419012 and 231819002.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Xie, L., Zheng, Q. et al. Seasonal variability of mesoscale eddies in the Banda Sea inferred from altimeter data. Acta Oceanol. Sin. 39, 11–20 (2020). https://doi.org/10.1007/s13131-020-1665-2

Download citation

Key words

  • mesoscale eddies
  • polarity distribution reversal (PDR)
  • meridional shear
  • Banda Sea
  • Indonesian seas