Morphological and molecular evidence supports the first occurrence of two fishes, Siganus sutor (Valenciennes, 1835) and Seriolina nigrofasciata (Rüppell, 1829) (Actinopterygii: Perciformes), from marine waters of Odisha coast, Bay of Bengal, India

Abstract

Marine ecosystems provide a wide variety of diverse habitats that frequently promote migration and ecological adaptation. The extent to which the geographic distribution of marine organism has reshaped by human activities remains underappreciated. The limitations intrinsic to morphology-based identification systems have engendered an urgent need for reliable genetic methods that enable the unequivocal recognition of fish species, particularly those that are prone to overexploitation and/or market substitution. In the present study, however, an attempt has been taken to identify two locally adapted fish species, Siganus sutor (Valenciennes, 1835) and Seriolina nigrofasciata (Rüppell, 1829) of order Perciformes, which happens to be the first record in Odisha coast, Bay of Bengal. The diagnostic characteristics of Siganus sutor are: dorsal fin XIII-10, anal fin VII-9, pectoral fin 15, pelvic fin II-3, while that of Seriolina nigrofasciata dorsal fin VI-I-35, anal fin I-17, pectoral fin 16, pelvic fin 5. All COI barcodes generated in this study were matched with reference sequences of expected species, according to morphological identification. Bayesian and likelihood phylogenetic trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at the species level. The phylogeographic studies based on haplotype network and migration rates suggest that both the species were not panmitic and the high-frequency population distribution indicates successful migration. The result of this study provides an important validation of the use of DNA barcode sequences for monitoring species diversity and changes within a complex marine ecosystem.

This is a preview of subscription content, log in to check access.

References

  1. Allendorf F W, Hohenlohe P A, Luikart G. 2010. Genomics and the future of conservation genetics. Nature Reviews Genetics, 11(10): 697–709, doi: https://doi.org/10.1038/nrg2844

    Google Scholar 

  2. Altschul S F, Gish W, Miller W, et al. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3): 403–410, doi: https://doi.org/10.1016/S0022-2836(05)80360-2

    Google Scholar 

  3. Arvedlund M. 2009. First records of unusual marine fish distributions-can they predict climate changes?. Journal of the Marine Biological Association of the United Kingdom, 89(4): 863–866, doi: https://doi.org/10.1017/S002531540900037

    Google Scholar 

  4. Bandelt H J, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1): 37–48, doi: https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Google Scholar 

  5. Barik T K, Swain S N, Sahu B, et al. 2018. Morphological and genetic analyses of the first record of longrakered trevally, Ulua mentalis (Perciformes: Carangidae) and of the pinjalo snapper, Pinjalo pinjalo (Perciformes: Lutjanidae) in the Odisha coast, Bay of Bengal. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 29(4): 552–560, doi: https://doi.org/10.1080/24701394.2017.1320993

    Google Scholar 

  6. Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15): 1972–1973, doi: https://doi.org/10.1093/bioinformatics/btp348

    Google Scholar 

  7. Clarke L M, Munch S B, Thorrold S R, et al. 2010. High connectivity among locally adapted populations of a marine fish (Menidia menidia). Ecology, 91(12): 3526–3537, doi: https://doi.org/10.1890/09-0548.1

    Google Scholar 

  8. Cowen R K, Paris C B, Srinivasan A. 2006. Scaling of connectivity in marine populations. Science, 311(5760): 522–527, doi: https://doi.org/10.1126/science.1122039

    Google Scholar 

  9. Davis M B, Shaw R G, Etterson J R. 2005. Evolutionary responses to changing climate. Ecology, 86(7): 1704–1714, doi: https://doi.org/10.1890/03-0788

    Google Scholar 

  10. DeWoody J A, Avise J C. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. Journal of Fish Biology, 56(3): 461–473, doi: https://doi.org/10.1111/J.1095-8649.2000.tb00748.x

    Google Scholar 

  11. Eschmeyer W N, Fong J D. 2017. Species by Family/Subfamily. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp [2017-04-28/2018-01-17]

  12. Eschmeyer W N, Fricke R, van der Laan R. 2017. Catalog of Fishes: Genera, Species, References. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp [2017-04-28/2018-01-17]

  13. Folmer O, Black M, Hoeh W, et al. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5): 294–299

    Google Scholar 

  14. Froese R, Pauly D. 2017. FishBase. World Wide Web electronic publication. www.fishbase.org [2017-02/2018-02-10]

  15. Gavrilets S. 2003. Perspective: models of speciation: what have we learned in 40 years?. Evolution, 57(10): 2197–2215, doi: https://doi.org/10.1111/j.0014-3820.2003.tb00233.x

    Google Scholar 

  16. Hajibabaei M, Singer G A C, Hebert P D N, et al. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23(4): 167–172, doi: https://doi.org/10.1016/j.tig.2007.02.001

    Google Scholar 

  17. Harley C D G, Hughes R A, Hultgren K M, et al. 2006. The impacts of climate change in coastal marine systems. Ecology Letters, 9(2): 228–241, doi: https://doi.org/10.1111/j.1461-0248.2005.00871.x

    Google Scholar 

  18. Hebert P D N, Cywinska A, Ball S L, et al. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512): 313–321, doi: https://doi.org/10.1098/rspb.2002.2218

    Google Scholar 

  19. Hey J, Nielsen R. 2007. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proceedings of the National Academy of Sciences of the United States of America, 104(8): 2785–2790, doi: https://doi.org/10.1073/pnas.0611164104

    Google Scholar 

  20. Hey J. 2010. Isolation with migration models for more than two populations. Molecular Biology and Evolution, 27(4): 905–920, doi: https://doi.org/10.1093/molbev/msp296

    Google Scholar 

  21. Hoffmann A A, Hallas R J, Dean J A, et al. 2003. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science, 301(5629): 100–102, doi: https://doi.org/10.1126/science.1084296

    Google Scholar 

  22. Ivanova N V, Zemlak T S, Hanner R H, et al. 2007. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7(4): 544–548, doi: https://doi.org/10.1111/j.1471-8286.2007.01748.x

    Google Scholar 

  23. Johnson G, Gill A. 1998. Perches and their allies. In: Paxton J R, Eschmeyer W, eds. Encyclopedia of Fishes. 2nd ed. San Diego, CA: Academic Press

    Google Scholar 

  24. Kaltz O, Shykoff J. 1998. Local adaptation in host-parasite systems. Heredity, 81(4): 361–370, doi: https://doi.org/10.1046/j.1365-2540.1998.00435.x

    Google Scholar 

  25. Katoh K, Standley D M. 2016. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics, 32(13): 1933–1942, doi: https://doi.org/10.1093/bioinformat-ics/btw108

    Google Scholar 

  26. Kelly R P, Oliver T A, Sivasundar A, et al. 2010. A method for detecting population genetic structure in diverse, high gene-flow species. Journal of Heredity, 101(4): 423–436, doi: https://doi.org/10.1093/jhered/esq022

    Google Scholar 

  27. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111–120, doi: https://doi.org/10.1007/BF01731581

    Google Scholar 

  28. Kirkpatrick M, Barton N H. 1997. Evolution of a species range. The American Naturalist, 150(1): 1–23, doi: https://doi.org/10.1086/286054

    Google Scholar 

  29. Levene H. 1953. Genetic equilibrium when more than one ecological niche is available. The American Naturalist, 87(836): 331–333, doi: https://doi.org/10.1086/281792

    Google Scholar 

  30. Limborg M T, Helyar S J, De Bruyn M, et al. 2012. Environmental selection on transcriptomederived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Molecular Ecology, 21(15): 3686–3703, doi: https://doi.org/10.1111/j.1365-294X.2012.05639.x

    Google Scholar 

  31. Marko P B, Hart M W. 2011. The complex analytical landscape of gene flow inference. Trends in Ecology & Evolution, 26: 448–456, doi: https://doi.org/10.1016/j.tree.2011.05.007

    Google Scholar 

  32. McCarty J P. 2001. Ecological consequences of recent climate change. Conservation Biology, 15(2): 320–331, doi: https://doi.org/10.1046/j.1523-1739.2001.015002320.x

    Google Scholar 

  33. Messing J. 1983. New M13 vectors for cloning. Methods in Enzymology, 101: 20–78, doi: https://doi.org/10.1016/0076-6879(83)01005-8

    Google Scholar 

  34. Milano I, Babbucci M, Cariani A, et al. 2014. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Molecular Ecology, 23(1): 118–135, doi: https://doi.org/10.1111/mec.12568

    Google Scholar 

  35. Nielsen E E, Hemmer-Hansen J, Poulsen N A, et al. 2009. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evolutionary Biology, 9: 276, doi: https://doi.org/10.1186/1471-2148-9-276

    Google Scholar 

  36. Ntiba M J, Jaccarini V. 1992. The effect of oocytic atresia on fecundity estimates of the rabbit fish Siganus sutor (Pisces: Siganidae) of Kenyan marine inshore waters. Hydrobiologia, 247(1–3): 215–222, doi: https://doi.org/10.1007/BF00008221

    Google Scholar 

  37. Palumbi S R. 2003. Population genetics, demographic connectivity, and the design of marine reserves. Ecological Applications, 13(sp1): 146–158, doi: https://doi.org/10.1890/1051-0761(2003)013[0146:PG-DCAT]2.0.CO;2

    Google Scholar 

  38. Palumbi S R, Warner R R. 2003. Why gobies are like Hobbits. Science, 299(5603): 51–52, doi: https://doi.org/10.1126/science.1080775

    Google Scholar 

  39. Paxton J R, Hoese D F, Allen G R, et al. 1989. Pisces. Petromyzontidae to Carangidae. Zoological Catalogue of Australia, Vol. 7. Canberra: Australian Government Publishing Service, 1–665

    Google Scholar 

  40. Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4): 231–259, doi: https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Google Scholar 

  41. Posada D, Crandall K A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14(9): 817–818, doi: https://doi.org/10.1093/bioinformatics/14.9.817

    Google Scholar 

  42. Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572–1574, doi: https://doi.org/10.1093/bioinformatics/btg180

    Google Scholar 

  43. Sambrook J, Russell R W. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  44. Schliep K P. 2011. Phangorn: phylogenetic analysis in R. Bioinformatics, 27(4): 592–593, doi: https://doi.org/10.1093/bioinformatics/btq706

    Google Scholar 

  45. Shen Yanjun, Guan Lihong, Wang Dengqiang, et al. 2016. DNA bar-coding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River. Ecology and Evolution, 6(9): 2702–2713, doi: https://doi.org/10.1002/ece3.2060

    Google Scholar 

  46. Smith M M. 1986. Siganidae. In: Smith M M, Heemstra P C, eds. Smiths’ Sea Fishes. Berlin: Springer-Verlag, 824–825

    Google Scholar 

  47. Spicer G S, Gaston K J. 1999. Physiological Diversity and Its Ecological Implications. Oxford, UK: Blackwell Science Ltd

    Google Scholar 

  48. Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21): 2688–2690, doi: https://doi.org/10.1093/bioinform-atics/btl446

    Google Scholar 

  49. Stewart J R, Lister A M. 2001. Cryptic northern refugia and the origins of the modern biota. Trends in Ecology & Evolution, 16(11): 608–613

    Google Scholar 

  50. Talwar P K, Kacker R K. 1984. Commercial sea fishes of India. Calcutta: Zoological Survey of India, 997

    Google Scholar 

  51. Tepolt C K. 2015. Adaptation in marine invasion: a genetic perspective. Biological Invasions, 17(3): 887–903, doi: https://doi.org/10.1007/s10530-014-0825-8

    Google Scholar 

  52. Therkildsen N O, Hemmer-Hansen J, Als T D, et al. 2013. Microevolution in time and space: SNP analysis of historical DNA reveals dynamic signatures of selection in Atlantic cod. Molecular Ecology, 22(9): 2424–2440, doi: https://doi.org/10.1111/mec.12260

    Google Scholar 

  53. Waples R S, Gaggiotti O. 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology, 15(6): 1419–1439, doi: https://doi.org/10.1111/j.1365-294X.2006.02890.x

    Google Scholar 

  54. Woodland D J. 1990. Revision of the fish family Siganidae with descriptions of two new species and comments on distribution and biology. Indo-Pacific Fishes, 19: 136

    Google Scholar 

  55. Yang Ziheng. 1994. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution, 39(1): 105–111, doi: https://doi.org/10.1007/bf00178256

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Usha R. Acharya.

Additional information

Foundation item: The Aquaculture and Marine Biotechnology Programme Initiative from Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India under contract No. BT/PR5259/AAQ/3/592/2012.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barik, T.K., Swain, S.N., Sahu, B. et al. Morphological and molecular evidence supports the first occurrence of two fishes, Siganus sutor (Valenciennes, 1835) and Seriolina nigrofasciata (Rüppell, 1829) (Actinopterygii: Perciformes), from marine waters of Odisha coast, Bay of Bengal, India. Acta Oceanol. Sin. 39, 26–35 (2020). https://doi.org/10.1007/s13131-020-1609-x

Download citation

Key words

  • Siganus sutor
  • Seriolina nigrofasciata
  • morphological characteristics
  • DNA Barcoding