Phytoplankton growth and microzooplankton grazing in the central and northern South China Sea in the spring intermonsoon season of 2017

Abstract

Phytoplankton growth rates and mortality rates were experimentally examined at 21 stations during the 2017 spring intermonsoon (April to early May) in the northern and central South China Sea (SCS) using the dilution technique, with emphasis on a comparison between the northern and central SCS areas which had different environmental factors. There had been higher temperature but lower nutrients and chlorophyll a concentrations in the central SCS than those in the northern SCS. The mean rates of phytoplankton growth (μ0) and microzooplankton grazing (m) were (0.88±0.33) d−1 and (0.55±0.22) d−1 in the central SCS, and both higher than those in the northern SCS with the values of μ0 ((0.81±0.16) d−1) and m ((0.30±0.09) d−1), respectively. Phytoplankton growth and microzooplankton grazing rates were significantly coupled in both areas. The microzooplankton grazing impact (m/μ0) on phytoplankton was also higher in the central SCS (0.63±0.12) than that in the northern SCS (0.37±0.06). The microzooplankton abundance was significantly correlated with temperature in the surface. Temperature might more effectively promote the microzooplankton grazing rate than phytoplankton growth rate, which might contribute to higher m and m/μ0 in the central SCS. Compared with temperature, nutrients mainly affected the growth rate of phytoplankton. In the nutrient enrichment treatment, the phytoplankton growth rate (μn) was higher than μ0 in the central SCS, suggesting phytoplankton growth in the central SCS was nutrient limited. The ratio of μ0/μn was significantly correlated with nutrients concentrations in the both areas, indicating the limitation of nutrients was related to the concentrations of background nutrients in the study stations.

This is a preview of subscription content, log in to check access.

References

  1. Archer S D, Leakey R J G, Burkill P H, et al. 1996. Microbial dynamics in coastal waters of East Antarctica: herbivory by heterotrophic dinoflagellates. Marine Ecology Progress Series, 139: 239–255, doi: https://doi.org/10.3354/meps139239

    Google Scholar 

  2. Banse K. 2007. Do we live in a largely top-down regulated world?. Journal of Biosciences, 32(4): 791–796, doi: https://doi.org/10.1007/s12038-007-0080-6

    Google Scholar 

  3. Belzile C, Demers S, Ferreyra G A, et al. 2006. UV effects on marine planktonic food webs: a synthesis of results from mesocosm studies. Photochemistry and Photobiology, 82(4): 850–856, doi: https://doi.org/10.1562/2005-09-27-RA-699

    Google Scholar 

  4. Burkill P H, Mantoura R F C, Llewellyn C A, et al. 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Marine Biology, 93(4): 581–590, doi: https://doi.org/10.1007/BF00392796

    Google Scholar 

  5. Calbet A, Landry M R. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography, 49(1): 51–57, doi: https://doi.org/10.4319/lo.2004.49.1.0051

    Google Scholar 

  6. Caron D A, Dennett M R. 1999. Phytoplankton growth and mortality during the 1995 Northeast Monsoon and Spring Intermonsoon in the Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 46(8–9): 1665–1690, doi: https://doi.org/10.1016/S0967-0645(99)00039-9

    Google Scholar 

  7. Caron D A, Hutchins D A. 2013. The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. Journal of Plankton Research, 35(2): 235–252, doi: https://doi.org/10.1093/plankt/fbs091

    Google Scholar 

  8. Chang J, Chung C C, Gong G C. 1996. Influences of cyclones on chlorophyll a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem. Marine Ecology Progress Series, 140: 199–205, doi: https://doi.org/10.3354/meps140199

    Google Scholar 

  9. Chen Bingzhang, Zheng Liping, Huang Bangqin, et al. 2013. Seasonal and spatial comparisons of phytoplankton growth and mortality rates due to microzooplankton grazing in the northern South China Sea. Biogeosciences, 10(4): 2775–2785, doi: https://doi.org/10.5194/bg-10-2775-2013

    Google Scholar 

  10. Chen Bingzhang, Landry M R, Huang Bangqin, et al. 2012. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean?. Limnology and Oceanography, 57(2): 519–526, doi: https://doi.org/10.4319/lo.2012.57.2.0519

    Google Scholar 

  11. Chen Bingzhang, Liu Hongbin, Landry M R, et al. 2009. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnology and Oceanography, 54(4): 1084–1097, doi: https://doi.org/10.4319/lo.2009.54.4.1084

    Google Scholar 

  12. Chen Y F L. 2005. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 52(2): 319–340, doi: https://doi.org/10.1016/j.dsr.2004.11.001

    Google Scholar 

  13. Edwards E S, Burkill P H, Stelfox C E. 1999. Zooplankton herbivory in the Arabian Sea during and after the SW monsoon, 1994. Deep Sea Research Part II: Topical Studies in Oceanography, 46(3–4): 843–863, doi: https://doi.org/10.1016/S0967-0645(98)00130-1

    Google Scholar 

  14. First M R, Lavrentyev P J, Jochem F J. 2007. Patterns of microzooplankton growth in dilution experiments across a trophic gradient: implications for herbivory studies. Marine Biology, 151(5): 1929–1940, doi: https://doi.org/10.1007/s00227-007-0629-9

    Google Scholar 

  15. Gifford D J. 1988. Impact of grazing by microzooplankton in the Northwest Arm of Halifax Harbour, Nova Scotia. Marine Ecology Progress Series, 47: 249–258, doi: https://doi.org/10.3354/meps047249

    Google Scholar 

  16. Gifford D J, Fessenden L M, Garrahan P R, et al. 1995. Grazing by microzooplankton and mesozooplankton in the high-latitude North Atlantic Ocean: spring versus summer dynamics. Journal of Geophysical Research, 100(C4): 6665–6675, doi: https://doi.org/10.1029/94JC00983

    Google Scholar 

  17. Gómez F. 2007. Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecologica, 32(2): 188–202, doi: https://doi.org/10.1016/j.actao.2007.04.002

    Google Scholar 

  18. Gong G C, Liu K K, Liu C T, et al. 1992. The chemical hydrography of the South China Sea west of Luzon and a comparison with the West Philippine Sea. Terrestrial, Atmospheric and Oceanic Sciences, 3(4): 587–602, doi: https://doi.org/10.3319/TAO.1992.3.4.587(O)

    Google Scholar 

  19. Hansen H P, Koroleff F. 2007. Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M, eds. Methods of Seawater Analysis. 3rd ed. New York: Wiley

    Google Scholar 

  20. Hu Zifeng, Tan Yehui, Song Xingyu, et al. 2014. Influence of mesoscale eddies on primary production in the South China Sea during spring inter-monsoon period. Acta Oceanologica Sinica, 33(3): 118–128, doi: https://doi.org/10.1007/s13131-014-0431-8

    Google Scholar 

  21. Irigoien X, Flynn K J, Harris R P. 2005. Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact?. Journal of Plankton Research, 27(4): 313–321, doi: https://doi.org/10.1093/plankt/fbi011

    Google Scholar 

  22. Jin Dexiang, Chen Jinhuan, Huang Kaige. 1965. China Marine Planktonic Diatoms (in Chinese). Shanghai: Shanghai Scientific and Technical Publishers, 1–219

    Google Scholar 

  23. Jyothibabu R, Devi C R A, Madhu N V, et al. 2008. The response of microzooplankton (20–200 µm) to coastal upwelling and summer stratification in the southeastern Arabian Sea. Continental Shelf Research, 28(4–5): 653–671, doi: https://doi.org/10.1016/j.csr.2007.12.001

    Google Scholar 

  24. Landry M R. 1993. Estimating rates of growth and grazing mortality of phytoplankton by the dilution method. In: Kemp P J, Cole J J, Sherr B F, et al., eds. Handbook of Methods in Aquatic Microbial Ecology. New York: CRC Press, 715–722

    Google Scholar 

  25. Landry M R, Brown S L, Campbell L, et al. 1998. Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10–11): 2353–2368, doi: https://doi.org/10.1016/S0967-0645(98)00074-5

    Google Scholar 

  26. Landry M R, Calbet A. 2004. Microzooplankton production in the oceans. ICES Journal of Marine Science, 61(4): 501–507, doi: https://doi.org/10.1016/j.icesjms.2004.03.011

    Google Scholar 

  27. Landry M R, Hassett R P. 1982. Estimating the grazing impact of marine micro-zooplankton. Marine Biology, 67(3): 283–288, doi: https://doi.org/10.1007/BF00397668

    Google Scholar 

  28. Lehman J T. 1991. Interacting growth and loss rates: the balance of top-down and bottom-up controls in plankton communities. Limnology and Oceanography, 36(8): 1546–1554, doi: https://doi.org/10.4319/lo.1991.36.8.1546

    Google Scholar 

  29. Leising A W, Horner R, Pierson J J, et al. 2005. The balance between microzooplankton grazing and phytoplankton growth in a highly productive estuarine fjord. Progress in Oceanography, 67(3–4): 366–383, doi: https://doi.org/10.1016/j.pocean.2005.09.007

    Google Scholar 

  30. Li Fengqi, Su Yusong. 2000. Analyses of Water Masses in Oceans (in Chinese). Qingdao: Qingdao Ocean University Press, 377–378

    Google Scholar 

  31. Liu Hongbin, Chang J, Tseng C M, et al. 2007. Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1602–1616, doi: https://doi.org/10.1016/j.dsr2.2007.05.004

    Google Scholar 

  32. Liu Hongbin, Suzuki K, Nishioka J, et al. 2009. Phytoplankton growth and microzooplankton grazing in the Sea of Okhotsk during late summer of 2006. Deep Sea Research Part I: Oceanographic Research Papers, 56(4): 561–570, doi: https://doi.org/10.1016/j.dsr.2008.12.003

    Google Scholar 

  33. Lonsdale D J, Caron D A, Dennett M R, et al. 2000. Predation by Oithona spp. on protozooplankton in the Ross Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 47(15–16): 3273–3283, doi: https://doi.org/10.1016/S0967-0645(00)00068-0

    Google Scholar 

  34. López-Urrutia Á, Martin E S, Harris R P, et al. 2006. Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences of the United States of America, 103(23): 8739–8744, doi: https://doi.org/10.1073/pnas.0601137103

    Google Scholar 

  35. López-Urrutia Á. 2008. The metabolic theory of ecology and algal bloom formation. Limnology and Oceanography, 53(5): 2046–2047, doi: https://doi.org/10.4319/lo.2008.53.5.2046

    Google Scholar 

  36. Landry M R, Barber R T, Bidigare R R, et al. 1997. Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac Synthesis. Limnology and Oceanography, 42(3): 405–418, doi: https://doi.org/10.4319/lo.1997.42.3.0405

    Google Scholar 

  37. Macaluso A L, Mitchell D L, Sanders R W. 2009. Direct effects of UV-B radiation on the freshwater heterotrophic nanoflagellate Paraphysomonas sp.. Applied and Environmental Microbiology, 75(13): 4525–4530, doi: https://doi.org/10.1128/AEM.02803-08

    Google Scholar 

  38. Nielsen T G, Kicrboe T. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnology and Oceanography, 39(3): 508–519, doi: https://doi.org/10.4319/lo.1994.39.3.0508

    Google Scholar 

  39. Ning X, Chai F, Xue H, et al. 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. Journal of Geophysical Research, 109(C10): C10005, doi: https://doi.org/10.1029/2004JC002365

    Google Scholar 

  40. Paranjape M A. 1987. Grazing by microzooplankton in the eastern Canadian arctic in summer 1983. Marine Ecology Progress Series, 40: 239–246, doi: https://doi.org/10.3354/meps040239

    Google Scholar 

  41. Porter K G, Sherr E B, Sherr B F, et al. 1985. Protozoa in planktonic food webs. The Journal of Protozoology, 32(3): 409–415, doi: https://doi.org/10.1111/j.1550-7408.1985.tb04036.x

    Google Scholar 

  42. Quevedo M, Viesca L, Anadón R, et al. 2003. The protistan microzooplankton community in the oligotrophicnorth-eastern Atlantic: large- and mesoscale patterns. Journal of Plankton Research, 25(5): 551–563, doi: https://doi.org/10.1093/plankt/25.5.551

    Google Scholar 

  43. Raven J A. 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Functional Ecology, 12(4): 503–513

    Google Scholar 

  44. Rose J M, Caron D A. 2007. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnology and Oceanography, 52(2): 886–895, doi: https://doi.org/10.4319/lo.2007.52.2.0886

    Google Scholar 

  45. Schmoker C, Hernández-León S, Calbet A. 2013. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. Journal of Plankton Research, 35(4): 691–706, doi: https://doi.org/10.1093/plankt/fbt023

    Google Scholar 

  46. Setälä O, Kivi K. 2003. Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquatic Microbial Ecology, 32(3): 287–297

    Google Scholar 

  47. Shi Ping, Du Yan, Wang Dongxiao, et al. 2001. Annual cycle of mixed layer in South China Sea. Journal of Tropical Oceanography (in Chinese), 20(1): 10–17

    Google Scholar 

  48. Stelfox-Widdicombe C E, Edwards E S, Burkill P H, et al. 2000. Microzooplankton grazing activity in the temperate and sub-tropical NE Atlantic: summer 1996. Marine Ecology Progress Series, 208: 1–12, doi: https://doi.org/10.3354/meps208001

    Google Scholar 

  49. Strom S. 2002. Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea. Hydrobiologia, 480(1–3): 41–54

    Google Scholar 

  50. Strom S L, Macri E L, Olson M B. 2007. Microzooplankton grazing in the coastal gulf of Alaska: variations in top-down control of phytoplankton. Limnology and Oceanography, 52(4): 1480–1494, doi: https://doi.org/10.4319/lo.2007.52.4.1480

    Google Scholar 

  51. Strom S L, Welschmeyer N A. 1991. Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean. Limnology and Oceanography, 36(1): 50–63, doi: https://doi.org/10.4319/lo.1991.36.1.0050

    Google Scholar 

  52. Su Jilan. 2004. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research, 24(16): 1745–1760, doi: https://doi.org/10.1016/j.csr.2004.06.005

    Google Scholar 

  53. Su Qiang, Huang Liangmin, Tan Yehui, et al. 2007. Preliminary study of microzooplankton grazing and community composition in the north of South China Sea in autumn. Marine Science Bulletin, 9(2): 43–53

    Google Scholar 

  54. Sun Jun. 2013. Carbon calculation on marine phytoplankton and its related fishery carbon sink. Progress in Fishery Sciences (in Chinese), 34(1): 90–96

    Google Scholar 

  55. Sun Jun, Feng Yuanyuan, Wang Dan, et al. 2013. Bottom-up control of phytoplankton growth in spring blooms in Central Yellow Sea, China. Deep Sea Research Part II: Topical Studies in Oceanography, 97: 61–71, doi: https://doi.org/10.1016/j.dsr2.2013.05.006

    Google Scholar 

  56. Sun Jun, Feng Yuanyuan, Zhang Yaohong, et al. 2007. Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays and Delaware Bay. Hydrobiologia, 589(1): 127–139, doi: https://doi.org/10.1007/s10750-007-0730-6

    Google Scholar 

  57. Sun Jun, Guo Shujin. 2011. Dinoflagellate heterotrophy. Acta Ecologica Sinica (in Chinese), 31(20): 6270–6286

    Google Scholar 

  58. Tan Saichun, Shi Guangyu. 2009. Spatiotemporal variability of satellite-derived primary production in the South China Sea, 1998–2006. Journal of Geophysical Research, 114(G3): G03015

    Google Scholar 

  59. Teixeira I G, Figueiras F G. 2009. Feeding behaviour and non-linear responses in dilution experiments in a coastal upwelling system. Aquatic Microbial Ecology, 55(1): 53–63

    Google Scholar 

  60. Tian Yongqing, Huang Honghui, Gong Xiuyu, et al. 2016. The formation mechanism of the low temperature and high salinity water mass near the Zhongsha Islands in the South China Sea in March 2014. Journal of Tropical Oceanography (in Chinese), 35(2): 1–9

    Google Scholar 

  61. Tsai A Y, Chiang K P, Chang J, et al. 2005. Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnology and Oceanography, 50(4): 1221–1231, doi: https://doi.org/10.4319/lo.2005.50.4.1221

    Google Scholar 

  62. Utermöhl H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik: mit 1 tabelle und 15 abbildungen im text und auf 1 tafel. SIL Communications, 9(1): 1–38

    Google Scholar 

  63. Verity P G, Stoecker D K, Sieracki M E, et al. 1993. Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47°N, 18°W. Deep Sea Research Part I: Oceanographic Research Papers, 40(9): 1793–1814, doi: https://doi.org/10.1016/0967-0637(93)90033-Y

    Google Scholar 

  64. Verity P G, Wassmann P, Frischer M E, et al. 2002. Grazing of phytoplankton by microzooplankton in the Barents Sea during early summer. Journal of Marine Systems, 38(1–2): 109–123, doi: https://doi.org/10.1016/S0924-7963(02)00172-0

    Google Scholar 

  65. Welschmeyer N A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39(8): 1985–1992, doi: https://doi.org/10.4319/lo.1994.39.8.1985

    Google Scholar 

  66. Wong G T F, Ku T L, Mulholland M, et al. 2007. The Southeast Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea—an overview. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1434–1447, doi: https://doi.org/10.1016/j.dsr2.2007.05.012

    Google Scholar 

  67. Wu Jingfeng, Chung S W, Wen L S, et al. 2003. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochemical Cycles, 17(1): 1008

    Google Scholar 

  68. Yamaji I. 1966. Illustrations of the Marine Plankton of Japan. Osaka: Hoikusha Publishing Co Ltd, 1–538

    Google Scholar 

  69. Yang E J, Choi J K, Hyun J H. 2004. Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Marine Biology, 146(1): 1–15, doi: https://doi.org/10.1007/s00227-004-1412-9

    Google Scholar 

  70. Zhang Wuchang, Feng Meiping, Yu Ying, et al. 2012. Illustrated Guide to Contemporary Tintinnids in the World (in Chinese). Beijing: Science Press

    Google Scholar 

  71. Zhang Jiangtao, Yin Kedong, Dong Lihua. 2011. Microzooplankton grazing rate of size-fractionated phytoplankton in spring in the Yellow Sea, China. Marine Sciences (in Chinese), 35(9): 1–7

    Google Scholar 

  72. Zhang Wuchang, Yu Ying, Xiao Tian. 2015. An Illustrated Guide to Marine Planktonic Aloricate Oligotrich Ciliates (in Chinese). Beijing: Science Press

    Google Scholar 

  73. Zheng Guangming, Tang Danling. 2007. Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff. Marine Ecology Progress Series, 333: 61–74

    Google Scholar 

  74. Zhou Linbin, Tan Yehui, Huang Liangmin, et al. 2011. Phytoplankton growth and microzooplankton grazing in the continental shelf area of northeastern South China Sea after Typhoon Fengshen. Continental Shelf Research, 31(16): 1663–1671, doi: https://doi.org/10.1016/j.csr.2011.06.017

    Google Scholar 

  75. Zhou Linbin, Tan Yehui, Huang Liangmin, et al. 2015a. Does microzooplankton grazing contribute to the pico-phytoplankton dominance in subtropical and tropical oligotrophic waters?. Acta Ecologica Sinica, 35(1): 29–38, doi: https://doi.org/10.1016/j.chnaes.2014.12.007

    Google Scholar 

  76. Zhou Linbin, Tan Yehui, Huang Lianmin, et al. 2015b. Seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in the southern South China Sea under the influence of the East Asian monsoon. Biogeosciences, 12(22): 6809–6822, doi: https://doi.org/10.5194/bg-12-6809-2015

    Google Scholar 

  77. Zubkov M V, Sleigh M A, Burkill P H. 2000. Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean. Aquatic Microbial Ecology, 21(1): 13–20

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Sun.

Additional information

Foundation item: The National Key Research and Development Program of China under contract No. 2019YFC1407805; the National Natural Science Foundation of China under contract Nos 41876134 and 41676112; the University Innovation Team Training Program for Tianjin under contract No. TD12-5003; the Tianjin 131 Innovation Team Program under contract No. 20180314; the Changjiang Scholar Program of Chinese Ministry of Education to Jun Sun under contract No. T2014253.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Guo, C., Yu, L. et al. Phytoplankton growth and microzooplankton grazing in the central and northern South China Sea in the spring intermonsoon season of 2017. Acta Oceanol. Sin. 39, 84–95 (2020). https://doi.org/10.1007/s13131-020-1593-1

Download citation

Key words

  • dilution technique
  • phytoplankton growth
  • microzooplankton grazing
  • South China Sea
  • spring intermonsoon season