Topology-based analysis of pelagic food web structure in the central and eastern tropical Pacific Ocean based on longline observer data

Abstract

The tropical Pacific Ocean supports many productive commercial fisheries. However, few studies of ecosystem structure in the tropical Pacific Ocean have been carried out. In this study, we analyzed the food web structure in the central and eastern tropical Pacific Ocean based on trophic relationships of 35 pelagic species collected by Chinese tuna longline observers from June to November in 2017. Topology indices (node degree, D; centrality indices, BC and CC; topological importance indices, TI1, TI3; keystone indices, K, Kt and Kb) and Key-Player algorithms (KPP-1, KPP-2) were used to select key species and construct a simplified food web combined with body size data. The Kendall rank correlation and hierarchical clustering analysis indicated that different topology indices resulted in consistent rankings of key species. Most key species were the same as those selected in other studies in the Pacific Ocean, such as Shortbill spearfish (Tetrapturus angustirostris), Swordfish (Xiphias gladius), Albacore tuna (Thunnus alalunga), cephalopods and scomber. The food web would be separated into many unconnected parts (F=0.632, FD=0.795, RD=0.957) after the removal of the five key species, indicating the key roles of these species in the food web structure and stability. Body size was considered an influential indicator in constructing the simplified food web. This study can improve our understanding of the food web structure in the tropical Pacific Ocean and provide scientific basis for further ecosystem dynamics studies.

This is a preview of subscription content, log in to check access.

References

  1. Allen G R, Robertson D R. 1994. Fishes of the Tropical Eastern Pacific. Honolulu: University of Hawaii Press, 234

    Google Scholar 

  2. Allesina S, Alonso D, Pascual M. 2008. A general model for food web structure. Science, 320(5876): 658–661, doi: https://doi.org/10.1126/science.1156269

    Google Scholar 

  3. Allesina S, Tang S. 2012. Stability criteria for complex ecosystems. Nature, 483(7388): 205–208, doi: https://doi.org/10.1038/nature10832

    Google Scholar 

  4. Bigelow K A, Hampton J, Miyabe N. 2002. Application of a habitat-based model to estimate effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus). Fisheries Oceanography, 11(3): 143–155, doi: https://doi.org/10.1046/J.1365-2419.2002.00196.x

    Google Scholar 

  5. Borgatti S P. 2003. The key player problem. In: Breiger R, Carley K, Pattison P, eds. Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers. Washington: National Academy of Sciences Press, 241–252

    Google Scholar 

  6. Breiger R L, Carley K M, Pattison P. 2003. Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers. Washington: National Academies Press, 2–11

    Google Scholar 

  7. Cheng Qingtai, Zheng Baoshan. 1987. Systematic Synopsis of Chinese Fishes (in Chinese). Beijing: Science Press, 116–183

    Google Scholar 

  8. Cohen J E. 1980. Food webs and niche spaces. Bulletin of Mathematical Biology, 42(5): 747–748, doi: https://doi.org/10.1016/S0092-8240(80)80071-1

    Google Scholar 

  9. Cohen J E, Pimm S L, Yodzis P, et al. 1993. Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology, 62(1): 67–78, doi: https://doi.org/10.2307/5483

    Google Scholar 

  10. Cox S P, Essington T E, Kitchell J F, et al. 2002. Reconstructing ecosystem dynamics in the central Pacific Ocean, 1952–1998: II. A preliminary assessment of the trophic impacts of fishing and effects on tuna dynamics. Canadian Journal of Fisheries and Aquatic Sciences, 59(11): 1736–1747, doi: https://doi.org/10.1139/f02-138

    Google Scholar 

  11. Dai Xiaojie, Xu Liuxiong. 2007. Illustrated Handbook of World Tuna Fishery Catch Species (in Chinese). Beijing: China Ocean Press, 108–218

    Google Scholar 

  12. Dambacher J M, Young J W, Olson R J, et al. 2010. Analyzing pelagic food webs leading to top predators in the Pacific Ocean: a graph-theoretic approach. Progress in Oceanography, 86(1–2): 152–165, doi: https://doi.org/10.1016/j.pocean.2010.04.011

    Google Scholar 

  13. Emmerson M C, Raffaelli D. 2004. Predator-prey body size, interaction strength and the stability of a real food web. Journal of Animal Ecology, 73(3): 399–409, doi: https://doi.org/10.1111/J.0021-8790.2004.00818.x

    Google Scholar 

  14. Everett M, Borgatti S. 2002. Computing regular equivalence: practical and theoretical issues. In: Mrvar A, Ferligoj A, eds. Developments in Statistics. Ljubljana: FDV, 31–42

    Google Scholar 

  15. Feng Huili, Zhu Jiangfeng, Chen Yan. 2019. Construction and historical comparison of ecosystem structure of the eastern tropical Pacific Ocean based on Ecopath model. Journal of Shanghai Ocean University (in Chinese), 28(6): 921–932

    Google Scholar 

  16. Frank K T, Petrie B, Choi J S, et al. 2005. Trophic cascades in a formerly cod-dominated ecosystem. Science, 308(5728): 1621–1623, doi: https://doi.org/10.1126/science.1113075

    Google Scholar 

  17. Gerrodette T, Olson R, Reilly S, et al. 2012. Ecological metrics of bio-mass removed by three methods of purse-seine fishing for tunas in the eastern tropical Pacific Ocean. Conservation Biology, 26(2): 248–256, doi: https://doi.org/10.1111/j.1523-1739.2011.01817.x

    Google Scholar 

  18. Hartvig M, Andersen K H, Beyer J E. 2011. Food web framework for size-structured populations. Journal of Theoretical Biology, 272(1): 113–122, doi: https://doi.org/10.1016/j.jtbi.2010.12.006

    Google Scholar 

  19. Hyslop E J. 1980. Stomach contents analysis—a review of methods and their application. Journal of Fish Biology, 17(4): 411–429, doi: https://doi.org/10.1111/j.1095-8649.1980.tb02775.x

    Google Scholar 

  20. Kitchell J F, Essington T E, Boggs CH, et al. 2002. The role of sharks and long-line fisheries in a pelagic ecosystem of the Central Pacific. Ecosystems, 5(2): 202–216, doi: https://doi.org/10.1007/s10021-001-0065-5

    Google Scholar 

  21. Jordán F, Liu W C, Davis A J. 2006. Topological keystone species: measures of positional importance in food webs. Oikos, 112(3): 535–546, doi: https://doi.org/10.1111/j.0030-1299.2006.13724.x

    Google Scholar 

  22. Jordán F, Scheuring I. 2002. Searching for keystones in ecological networks. Oikos, 99(3): 607–612, doi: https://doi.org/10.1034/j.1600-0706.2002.11889.x

    Google Scholar 

  23. Law R, Morton R D. 1996. Permanence and the assembly of ecological communities. Ecology, 77(3): 762–775, doi: https://doi.org/10.2307/2265500

    Google Scholar 

  24. Li Zhenji, Chen Xiaolin, Zheng Hailei. 2004. Ecology (in Chinese). 2th ed. Beijing: Science Press, 36–105

    Google Scholar 

  25. Luczkovich J J, Borgatti S P, Johnson J C, et al. 2003. Defining and measuring trophic role similarity in food webs using regular equivalence. Journal of Theoretical Biology, 220(3): 303–321, doi: https://doi.org/10.1006/jtbi.2003.3147

    Google Scholar 

  26. May R M. 1972. Will a large complex system be stable?. Nature, 238(5364): 413–414, doi: https://doi.org/10.1038/238413a0

    Google Scholar 

  27. May R M. 1973. Population interactions and change in biotic communities. (Book reviews: stability and complexity in model ecosystems). Science, 181(4105): 1157–1130, doi: https://doi.org/10.1126/science.181.4105.1157

    Google Scholar 

  28. McCann K S. 2000. The diversity-stability debate. Nature, 405(6783): 228–233, doi: https://doi.org/10.1038/35012234

    Google Scholar 

  29. Mougi A, Kondoh M. 2012. Diversity of interaction types and ecological community stability. Science, 337(6092): 349–351, doi:https://doi.org/10.1126/science.1220529

    Google Scholar 

  30. Navia A F, Cruz-Escalona V H, Giraldo A, et al. 2016. The structure of a marine tropical food web, and its implications for ecosystem-based fisheries management. Ecological Modelling, 328: 23–33, doi: https://doi.org/10.1016/j.ecolmodel.2016.02.009

    Google Scholar 

  31. Olson R J, Watters G M. 2003. A model of the pelagic ecosystem in the eastern tropical Pacific Ocean. Inter-American Tropical Tuna Commission Bulletin, 22: 135–211

    Google Scholar 

  32. Pascual M, Dunne J A. 2006. Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford: Oxford University Press, 27–86

    Google Scholar 

  33. Pauly D, Christensen V, Dalsgaard J, et al. 1998. Fishing down marine food webs. Science, 279(5352): 860–863, doi: https://doi.org/10.1126/science.279.5352.860

    Google Scholar 

  34. Pimm S L. 1980. Food web design and the effect of species deletion. Oikos, 35(2): 139–149, doi: https://doi.org/10.2307/3544422

    Google Scholar 

  35. Polovina J J, Abecassis M, Howell E A, et al. 2009. Increases in the relative abundance of mid-trophic level fishes concurrent with declines in apex predators in the subtropical North Pacific, 1996–2006. Fishery Bulletin, 107(4): 523–531

    Google Scholar 

  36. Polovina J J, Woodworth-Jefcoats P A. 2013. Fishery-induced changes in the subtropical Pacific pelagic ecosystem size structure: observations and theory. PLoS One, 8(4): e62341, doi: https://doi.org/10.1371/journal.pone.0062341

    Google Scholar 

  37. Power M E, Tilman D, Estes J A, et al. 1996. Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. BioScience, 46(8): 609–620, doi: https://doi.org/10.2307/1312990

    Google Scholar 

  38. Robinson H J, Cailliet G M, Ebert D A. 2007. Food habits of the longnose skate, Raja rhina (Jordan and Gilbert, 1880), in central California waters. Environmental Biology of Fishes, 80(2–3): 165–179, doi: https://doi.org/10.1007/s10641-007-9222-9

    Google Scholar 

  39. Sánchez-Hernández J, Cobo F, Amundsen P A. 2015. Food web topology in high mountain lakes. PLoS One, 10(11): e0143016, doi: https://doi.org/10.1371/journal.pone.0143016

    Google Scholar 

  40. Schmitz O J. 2009. Effects of predator functional diversity on grassland ecosystem function. Ecology, 90(9): 2339–2345, doi: https://doi.org/10.1890/08-1919.1

    Google Scholar 

  41. Shin Y J, Rochet M J, Jennings S, et al. 2005. Using size-based indicators to evaluate the ecosystem effects of fishing. ICES Journal of Marine Science, 62(3): 384–396, doi: https://doi.org/10.1016/j.icesjms.2005.01.004

    Google Scholar 

  42. Sibert J, Hampton J, Kleiber P, et al. 2006. Biomass, size, and trophic status of top predators in the Pacific Ocean. Science, 314(5806): 1773–1776, doi: https://doi.org/10.1126/science.1135347

    Google Scholar 

  43. Spencer M, Warren P H. 1996. The effects of habitat size and productivity on food web structure in small aquatic microcosms. Oikos, 75(3): 419–430, doi: https://doi.org/10.2307/3545882

    Google Scholar 

  44. Stevens J D, Bonfil R, Dulvy N K, et al. 2000. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. Ices Journal of Marine Science, 57: 476–494, doi: https://doi.org/10.1006/jmsc.2000.0724

    Google Scholar 

  45. Tang Qisheng, Su Jilan. 2001. Study on marine ecosystem dynamics and living resources sustainable utilization. Advance in Earth Sciences (in Chinese), 16(1): 5–11

    Google Scholar 

  46. Vander Zanden M J, Vadeboncoeur Y. 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology, 83(8): 2152–2161, doi: https://doi.org/10.1890/0012-9658(2002)083[2152:FAIOBA]2.0.CO;2

    Google Scholar 

  47. Williams R J, Martinez N D. 2000. Simple rules yield complex food webs. Nature, 404(6774): 180–183, doi: https://doi.org/10.1038/35004572

    Google Scholar 

  48. Woodward G, Ebenman B, Emmerson M, et al. 2005. Body size in ecological networks. Trends in Ecology & Evolution, 20(7): 402–409

    Google Scholar 

  49. Worm B, Sandow M, Oschlies A, et al. 2005. Global patterns of predator diversity in the open oceans. Science, 309(5739): 1365–1369, doi: https://doi.org/10.1126/science.1113399

    Google Scholar 

  50. Zhang Bo. 2005. Preliminary studies on marine food web and trophodynamics in China coastal seas (in Chinese) [dissertation]. Qingdao: Ocean University of China

    Google Scholar 

  51. Zhu Jiangfeng, Dai Xiaojie, Wang Xuefang, et al. 2016. A review of methodology in Marie food-web topology. Progress in Fishery Sciences (in Chinese), 37(2): 153–159

    Google Scholar 

  52. Zhu Jiangfeng, Xu Liuxiong, Dai Xiaojie, et al. 2012. Comparative analysis of depth distribution for seventeen large pelagic fish species captured in a longline fishery in the central-eastern Pacific Ocean. Scientia Marina, 76(1): 149–157, doi: https://doi.org/10.3989/scimar.03379.16C

    Google Scholar 

Download references

Acknowledgements

We thank Richard Kindong and Mackenzie Mazur for providing comments on the manuscript. We also thank two anonymous reviewers for their valuable comments to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiangfeng Zhu.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41676120.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Zhu, J. Topology-based analysis of pelagic food web structure in the central and eastern tropical Pacific Ocean based on longline observer data. Acta Oceanol. Sin. 39, 1–9 (2020). https://doi.org/10.1007/s13131-020-1592-2

Download citation

Key words

  • topology
  • food web structure
  • tropical Pacific
  • key species
  • size structure