Coupling virio- and bacterioplankton populations with environmental variable changes in the Bohai Sea

Abstract

Uncovering the role of environmental factors and finding critical factors which harbor significant fractions in governing microbial communities remain key questions in coastal marine systems. To detect the interactions between environmental factors and distributions of virio- and bacterioplankton in trophic coastal areas, we used flow cytometry to investigate the abundance of virio- and bacterioplankton covering 31 stations in the Bohai Sea of China. Our results suggested that the average abundance of total virus (TV) in winter (∼2.29×108 particles/mL) was slightly lower than in summer (∼3.83×108 particles/mL). The mean total bacterial abundance (TB) was much lower in winter (∼2.54×107 particles/mL) than in summer (∼5.43×107 particles/mL). Correlation analysis via redundancy analysis (RDA) and network analysis among virioplankton, bacterioplankton and environmental factors revealed that the abundances of viral and bacterial subpopulations depend on environmental factors. In winter, only temperature significantly influenced the abundances of virio- and bacterioplankton. In summer, in addition to temperature, both salinity and nutrient (SiO2) had a remarkable impact on the distribution of virio- and bacterioplankton. Our results showed a clear seasonal and trophic pattern throughout the whole water system, which revealed that temperature and eutrophication may play crucial roles in microbial distribution pattern.

This is a preview of subscription content, log in to check access.

References

  1. Aristegui J, Gasol J M, Duarte C M, et al. 2009. Microbial oceanography of the dark ocean’s pelagic realm. Limnology and Oceanography, 54(5): 1501–1529, doi: https://doi.org/10.4319/lo.2009.54.5.1501

    Google Scholar 

  2. Arrigo K R. 2005. Marine microorganisms and global nutrient cycles. Nature, 437(7057): 349–355, doi: https://doi.org/10.1038/nature04159

    Google Scholar 

  3. Azam F. 1998. Microbial control of oceanic carbon flux: the plot thickens. Science, 280(5364): 694–696, doi: https://doi.org/10.1126/science.280.5364.694

    Google Scholar 

  4. Azam F, Fenchel T, Field J G, et al. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10: 257–263, doi: https://doi.org/10.3354/meps010257

    Google Scholar 

  5. Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5(10): 782–791, doi: https://doi.org/10.1038/nrmicro1747

    Google Scholar 

  6. Bai Xiaoge, Wang Min, Liang Yantao, et al. 2012. Distribution of microbial populations and their relationship with environmental variables in the North Yellow Sea, China. Journal of Ocean University of China, 11(1): 75–85, doi: https://doi.org/10.1007/s11802-012-1799-8

    Google Scholar 

  7. Barbieux M, Uitz J, Gentili B, et al. 2019. Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database. Biogeosciences, 16(6): 1321–1342, doi: https://doi.org/10.5194/bg-16-1321-2019

    Google Scholar 

  8. Bettarel Y, Sime-Ngando T, Amblard C, et al. 2004. Viral activity in two contrasting lake ecosystems. Applied and Environmental Microbiology, 70(5): 2941–2951, doi: https://doi.org/10.1128/AEM.70.5.2941-2951.2004

    Google Scholar 

  9. Bongiorni L, Magagnini M, Armeni M, et al. 2005. Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea. Applied and Environmental Microbiology, 71(11): 6644–6650, doi: https://doi.org/10.1128/AEM.71.11.6644-6650.2005

    Google Scholar 

  10. Bouvier T, del Giorgio P A, Gasol J M. 2007. A comparative study of the cytometric characteristics of High and Low nucleic-acid bacterioplankton cells from different aquatic ecosystems. Environmental Microbiology, 9(8): 2050–2066, doi: https://doi.org/10.1111/j.1462-2920.2007.01321.x

    Google Scholar 

  11. Bouvier T, Maurice C F. 2011. A single-cell analysis of Virioplankton adsorption, infection, and intracellular abundance in different Bacterioplankton physiologic categories. Microbial Ecology, 62(3): 669–678, doi: https://doi.org/10.1007/s00248-011-9862-3

    Google Scholar 

  12. Breitbart M, Bonnain C, Malki K, et al. 2018. Phage puppet masters of the marine microbial realm. Nature Microbiology, 3(7): 754–766, doi: https://doi.org/10.1038/s41564-018-0166-y

    Google Scholar 

  13. Brussaard C P D. 2004. Optimization of procedures for counting viruses by flow cytometry. Applied and Environmental Microbiology, 70(3): 1506–1513, doi: https://doi.org/10.1128/AEM.70.3.1506-1513.2004

    Google Scholar 

  14. Buitenhuis E T, Li W K W, Lomas M W, et al. 2012. Bacterial biomass distribution in the global ocean. Earth System Science Data, 5(1): 301–315, doi: https://doi.org/10.5194/essdd-5-301-2012

    Google Scholar 

  15. Chen Changsheng, Liu Hedong, Beardsley R C. 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1): 159–186, doi: https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2

    Google Scholar 

  16. Dann L M, McKerral J C, Smith R J, et al. 2018. Microbial micropatches within microbial hotspots. PLoS One, 13(5): e0197224, doi: https://doi.org/10.1371/journal.pone.0197224

    Google Scholar 

  17. Danovaro R. 1998. Do bacteria compete with phytoplankton for inorganic nutrients? Possible ecological implications. Chemistry and Ecology, 14(2): 83–96, doi: https://doi.org/10.1080/02757549808035544

    Google Scholar 

  18. DeLong E F, Karl D M. 2005. Genomic perspectives in microbial oceanography. Nature, 437(7057): 336–342, doi: https://doi.org/10.1038/nature04157

    Google Scholar 

  19. Fischer U R, Velimirov B. 2002. High control of bacterial production by viruses in a eutrophic oxbow lake. Aquatic Microbial Ecology, 27(1): 1–12

    Google Scholar 

  20. Fuhrman J A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399(6736): 541–548, doi: https://doi.org/10.1038/21119

    Google Scholar 

  21. Gao Xuelu, Zhou Fengxia, Chen C T A. 2014. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals. Environment International, 62: 12–30, doi: https://doi.org/10.1016/j.envint.2013.09.019

    Google Scholar 

  22. Gomes A, Gasol J M, Estrada M, et al. 2015. Heterotrophic bacterial responses to the winter-spring phytoplankton bloom in open waters of the NW Mediterranean. Deep Sea Research Part I: Oceanographic Research Papers, 96: 59–68, doi: https://doi.org/10.1016/j.dsr.2014.11.007

    Google Scholar 

  23. Gözdereliler E, Boon N, Aamand J, et al. 2013. Comparing metabolic functionalities, community structures, and dynamics of herbicide-degrading communities cultivated with different substrate concentrations. Applied and Environmental Microbiology, 79(1): 367–375, doi: https://doi.org/10.1128/AEM.02536-12

    Google Scholar 

  24. Guidi L, Chaffron S, Bittner L, et al. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532(7600): 465–470, doi: https://doi.org/10.1038/nature16942

    Google Scholar 

  25. Jacquet S, Domaizon I, Personnic S, et al. 2005. Estimates of protozoan- and viral-mediated mortality of bacterioplankton in Lake Bourget (France). Freshwater Biology, 50(4): 627–645, doi: https://doi.org/10.1111/j.1365-2427.2005.01349.x

    Google Scholar 

  26. Jiang S C, Paul J H. 1994. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Marine Ecology Progress Series, 104: 163–172, doi: https://doi.org/10.3354/meps104163

    Google Scholar 

  27. Jiao Nianzhi, Yang Yanhui, Hong Ning, et al. 2005. Dynamics of auto-trophic picoplankton and heterotrophic bacteria in the East China Sea. Continental Shelf Research, 25(10): 1265–1279, doi: https://doi.org/10.1016/j.csr.2005.01.002

    Google Scholar 

  28. Katano T, Nakano S I, Mitamura O, et al. 2008. Abundance and pigment type composition of picocyanobacteria in Barguzin Bay, Lake Baikal. Limnology, 9(2): 105–114, doi: https://doi.org/10.1007/s10201-008-0239-3

    Google Scholar 

  29. Larsen J B, Larsen A, Thyrhaug R, et al. 2008. Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 levels. Biogeosciences, 5(2): 523–533, doi: https://doi.org/10.5194/bg-5-523-2008

    Google Scholar 

  30. Lasternas S, Agustí S, Duarte C M. 2010. Phyto- and bacterioplankton abundance and viability and their relationship with phosphorus across the Mediterranean Sea. Aquatic Microbial Ecology, 60(2): 175–191, doi: https://doi.org/10.3354/ame01421

    Google Scholar 

  31. Li W K W, Jellett J F, Dickie P M. 1995. DNA distributions in planktonic bacteria stained with TOTO or TO-PRO. Limnology and Oceanography, 40(8): 1485–1495, doi: https://doi.org/10.4319/lo.1995.40.8.1485

    Google Scholar 

  32. Li Shuyuan, Miao Fengmin, Liu Guoxian, et al. 1996. The study of pollution history of heavy metals in Bohai Sea. Marine Environmental Science (in Chinese), 15(4): 28–31

    Google Scholar 

  33. Li Hongbo, Xiao Tian, Ding Tao, et al. 2006. Effect of the Yellow Sea Cold Water Mass (YSCWM) on distribution of bacterioplankton. Acta Ecologica Sinica, 26(4): 1012–1020, doi: https://doi.org/10.1016/S1872-2032(06)60020-6

    Google Scholar 

  34. Liang Yantao, Li Li, Luo Tingwei, et al. 2014. Horizontal and vertical distribution of marine virioplankton: a basin scale investigation based on a global cruise. PLoS One, 9(11): e111634, doi: https://doi.org/10.1371/journal.pone.0111634

    Google Scholar 

  35. Lie H J. 1984. A note on water masses and general circulation in the Yellow Sea (Hwanghae). Journal of Oceanological Society of Korea, 19(2): 187–194

    Google Scholar 

  36. Liu Yanming, Zhang Qiya, Yuan Xiuping, et al. 2006. Seasonal variation of virioplankton in a eutrophic shallow lake. Hydrobiologia, 560(1): 323–334, doi: https://doi.org/10.1007/s10750-005-1280-4

    Google Scholar 

  37. Longnecker K, Sherr B F, Sherr E B. 2005. Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem. Applied and Environmental Microbiology, 71(12): 7737–7749, doi: https://doi.org/10.1128/AEM.71.12.7737-7749.2005

    Google Scholar 

  38. Ma Jian, Qiao Fangli, Xia Changshui, et al. 2006. Effects of the Yellow Sea Warm Current on the winter temperature distribution in a numerical model. Journal of Geophysical Research: Oceans, 111(C11): C11S04

    Google Scholar 

  39. Marie D, Partensky F, Jacquet S, et al. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology, 63(1): 186–193, doi: https://doi.org/10.1128/AEM.63.1.186-193.1997

    Google Scholar 

  40. Nagata T, Fukuda H, Fukuda R, et al. 2000. Bacterioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes. Limnology and Oceanography, 45(2): 426–435, doi: https://doi.org/10.4319/lo.2000.45.2.0426

    Google Scholar 

  41. Pan L A, Zhang J, Zhang L H. 2007. Picophytoplankton, nanophytoplankton, heterotrohpic bacteria and viruses in the Changjiang Estuary and adjacent coastal waters. Journal of Plankton Research, 29(2): 187–197, doi: https://doi.org/10.1093/plankt/fbm006

    Google Scholar 

  42. Paterson J S, Nayar S, Mitchell J G, et al. 2013. Population-specific shifts in viral and microbial abundance within a cryptic up-welling. Journal of Marine Systems, 113–114: 52–61, doi: https://doi.org/10.1016/j.jmarsys.2012.12.009

    Google Scholar 

  43. Pradeu T. 2016. Mutualistic viruses and the heteronomy of life. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 59: 80–88, doi: https://doi.org/10.1016/j.shpsc.2016.02.007

    Google Scholar 

  44. Rösel S, Grossart H P. 2012. Contrasting dynamics in activity and community composition of free-living and particle-associated bacteria in spring. Aquatic Microbial Ecology, 66(2): 169–181, doi: https://doi.org/10.3354/ame01568

    Google Scholar 

  45. Sandaa R A, Gómez-Consarnau L, Pinhassi J, et al. 2009. Viral control of bacterial biodiversity-evidence from a nutrient-enriched marine mesocosm experiment. Environmental Microbiology, 11(10): 2585–2597, doi: https://doi.org/10.1111/j.1462-2920.2009.01983.x

    Google Scholar 

  46. Schapira M, Buscot M J, Leterme S C, et al. 2009. Distribution of heterotrophic bacteria and virus-like particles along a salinity gradient in a hypersaline coastal lagoon. Aquatic Microbial Ecology, 54(2): 171–183, doi: https://doi.org/10.3354/ame01262

    Google Scholar 

  47. Seymour J R, Patten N, Bourne D G, et al. 2005. Spatial dynamics of virus-like particles and heterotrophic bacteria within a shallow coral reef system. Marine Ecology Progress Series, 288: 1–8, doi: https://doi.org/10.3354/meps288001

    Google Scholar 

  48. Shelford E J, Suttle C A. 2018. Virus-mediated transfer of nitrogen from heterotrophic bacteria to phytoplankton. Biogeosciences, 15(3): 809–819, doi: https://doi.org/10.5194/bg-15-809-2018

    Google Scholar 

  49. Sieradzki E T, Ignacio-Espinoza J C, Needham D M, et al. 2019. Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes. Nature Communications, 10(1): 1169, doi: https://doi.org/10.1038/s41467-019-09106-z

    Google Scholar 

  50. Siokou-Frangou I, Christaki U, Mazzocchi M G, et al. 2010. Plankton in the open Mediterranean Sea: a review. Biogeosciences, 7(5): 1543–1586, doi: https://doi.org/10.5194/bg-7-1543-2010

    Google Scholar 

  51. Stroinov Y V, Romanenko A V, Maslennikova T S, et al. 2011. Virio- and bacterioplankton of a small river: influence that viruses have on the mortality of heterotrophic bacteria. Inland Water Biology, 4(3): 293–300, doi: https://doi.org/10.1134/S1995082911030175

    Google Scholar 

  52. Suttle C A. 2005. Viruses in the sea. Nature, 437(7057): 356–361, doi: https://doi.org/10.1038/nature04160

    Google Scholar 

  53. Valdés V, Carlotti F, Escribano R, et al. 2018. Nitrogen and phosphorus recycling mediated by copepods and response of bacterioplankton community from three contrasting areas in the western tropical South Pacific (20°S). Biogeosciences, 15(20): 6019–6032, doi: https://doi.org/10.5194/bg-15-6019-2018

    Google Scholar 

  54. Vrede K, Stensdotter U, Lindström E S. 2003. Viral and Bacterioplankton dynamics in two lakes with different Humic contents. Microbial Ecology, 46(4): 406–415, doi: https://doi.org/10.1007/s00248-003-2009-4

    Google Scholar 

  55. Wang Qiang, Guo Xinyu, Takeoka H. 2008. Seasonal variations of the Yellow River plume in the Bohai Sea: a model study. Journal of Geophysical Research: Oceans, 113(C8): C08046

    Google Scholar 

  56. Wang Caixia, Wang Yibo, Paterson J S, et al. 2016. Macroscale distribution of virioplankton and heterotrophic bacteria in the Bohai Sea. FEMS Microbiology Ecology, 92(3): fiw017, doi: https://doi.org/10.1093/femsec/fiw017

    Google Scholar 

  57. Weinbauer M G. 2004. Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2): 127–181, doi: https://doi.org/10.1016/j.femsre.2003.08.001

    Google Scholar 

  58. Wommack K E, Colwell R R. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews, 64(1): 69–114, doi: https://doi.org/10.1128/MMBR.64.1.69-114.2000

    Google Scholar 

  59. Xin Ming, Ma Deyi, Wang Baodong. 2015. Chemicohydrographic characteristics of the Yellow Sea Cold Water Mass. Acta Oceanologica Sinica, 34(6): 5–11, doi: https://doi.org/10.1007/s13131-015-0681-0

    Google Scholar 

  60. Xu Lingling, Wu Dexing, Lin Xiaopei, et al. 2009. The study of the yellow sea warm current and its seasonal variability. Journal of Hydrodynamics, 21(2): 159–165, doi: https://doi.org/10.1016/S1001-6058(08)60133-X

    Google Scholar 

  61. Xu Yunping, Zhou Shangzhe, Hu Limin, et al. 2018. Different controls on sedimentary organic carbon in the Bohai Sea: river mouth relocation, turbidity and eutrophication. Journal of Marine Systems, 180: 1–8, doi: https://doi.org/10.1016/j.jmarsys.2017.12.004

    Google Scholar 

  62. Yang Wen, Zheng Cheng, Zheng Zhongming, et al. 2018. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability. Ecotoxicology and Environmental Safety, 156: 366–374, doi: https://doi.org/10.1016/j.ecoenv.2018.03.043

    Google Scholar 

  63. Yu Shaolan, Yao Peng, Liu Jiwen, et al. 2016. Diversity, abundance, and niche differentiation of ammonia-oxidizing prokaryotes in mud deposits of the eastern China marginal seas. Frontiers in Microbiology, 7: 137

    Google Scholar 

  64. Zhang Zhaohui, Zhu Mingyuan, Wang Zongling, et al. 2006. Monitoring and managing pollution load in Bohai Sea, PR China. Ocean & Coastal Management, 49(9–10): 706–716

    Google Scholar 

Download references

Acknowledgements

We are thankful to the crew and scientists involved with this research. We thank the School of Biological Sciences and Flinders University for providing funding for James G. Mitchell and James S. Paterson to work on the project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoke Hu.

Additional information

Foundation item: The National Basic Research Program (973 Program) of China under contract No. 2015CB453300; the Strategic Priority Research Programme of Chinese Academic of Sciences under contract No. XDA11020403; the Key Research Project of Frontier Science of Chinese Academy of Sciences under contract No. QYZDB-SSW-DQC041; the Technology Service Network Plan of Chinese Academy of Sciences under contract No. STS, ZSYS-006; the External Cooperation Program of Chinese Academy of Sciences (supported by the Bureau of International Cooperation, the Chinese Academy of Sciences) under contract No. 133337KYSB20180015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wu, L., Wang, Y. et al. Coupling virio- and bacterioplankton populations with environmental variable changes in the Bohai Sea. Acta Oceanol. Sin. 39, 72–83 (2020). https://doi.org/10.1007/s13131-020-1591-3

Download citation

Key words

  • virioplankton
  • bacterioplankton
  • flow cytometry
  • network
  • Bohai Sea