Large along-axis variations in magma supply and tectonism of the Southeast Indian Ridge near the Australian-Antarctic Discordance

Abstract

We analyzed seafloor morphology and geophysical anomalies of the Southeast Indian Ridge (SEIR) to reveal the remarkable changes in magma supply along this intermediate fast-spreading ridge. We found systematic differences of the Australian-Antarctic Discordance (AAD) from adjacent ridge segments with the residual mantle Bouguer gravity anomaly (RMBA) being more positive, seafloor being deeper, morphology being more chaotic, M factors being smaller at the AAD. These systematic anomalies, as well as the observed Na8.0 being greater and Fe8.0 being smaller at AAD, suggest relatively starved magma supply and relatively thin crust within the AAD. Comparing to the adjacent ridges segments, the calculated average map-view M factors are relatively small for the AAD, where several Oceanic Core Complexes (OCCs) develop. Close to 30 OCCs were found to be distributed asymmetrically along the SEIR with 60% of OCCs at the northern flank. The OCCs are concentrated mainly in Segments B3 and B4 within the AAD at ≈124°–126°E, as well as at the eastern end of Zone C at ≈115°E. The relatively small map-view M factors within the AAD indicate stronger tectonism than the adjacent SEIR segments. The interaction between the westward migrating Pacific mantle and the relatively cold mantle beneath the AAD may have caused a reduction in magma supply, leading to the development of abundant OCCs.

This is a preview of subscription content, log in to check access.

References

  1. Anderson R N, Spariosu D J, Weissel J K, et al. 1980. The interrelation between variations in magnetic anomaly amplitudes and basalt magnetization and chemistry along the Southeast Indian Ridge. Journal of Geophysical Research: Solid Earth, 185(B7): 3883–3898, doi: https://doi.org/10.1029/JB085iB07p03883

    Article  Google Scholar 

  2. Behn M D, Ito G. 2008. Magmatic and tectonic extension at midocean ridges: 1. Controls on fault characteristics. Geochemistry, Geophysics, Geosystems, 9(8): Q08O10, doi: https://doi.org/10.1029/2008GC001965

    Article  Google Scholar 

  3. Buck W R, Lavier L L, Poliakov A N B. 2005. Modes of faulting at midocean ridges. Nature, 434(7034): 719–723, doi: https://doi.org/10.1038/nature03358

    Article  Google Scholar 

  4. Cann J R, Blackman D K, Smith D K, et al. 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385(6612): 329–332

    Article  Google Scholar 

  5. Christie D M, West B P, Pyle D G, et al. 1998. Chaotic topography, mantle flow and mantle migration in the Australian-Antarctic discordance. Nature, 394(6694): 637–644, doi: https://doi.org/10.1038/29226

    Article  Google Scholar 

  6. Ciazela J, Koepke J, Dick H J B, et al. 2015. Mantle rock exposures at oceanic core complexes along mid-ocean ridges. Geologos, 21(4): 207–231, doi: https://doi.org/10.1515/logos-2015-0017

    Article  Google Scholar 

  7. Cundall P A. 1989. Numerical experiments on localization in frictional material. Ingenieur-Archiv, 58(2): 148–159, doi: https://doi.org/10.1007/bf00538368

    Article  Google Scholar 

  8. Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412, doi: https://doi.org/10.1038/nature02128

    Article  Google Scholar 

  9. Escartín J, Mével C, Macleod C J, et al. 2003. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45’N. Geochemistry, Geophysics, Geosystems, 4(8): 1067, doi: https://doi.org/10.1029/2002GC000472

    Article  Google Scholar 

  10. Escartín J, Smith D K, Cann J R, et al. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455(7214): 790–794, doi: https://doi.org/10.1038/nature07333

    Article  Google Scholar 

  11. Gurnis M, Müller R D, Moresi L. 1998. Cretaceous vertical motion of Australia and the Australian Antarctic discordance. Science, 279(5356): 1499–1504, doi: https://doi.org/10.1126/science.279.5356.1499

    Article  Google Scholar 

  12. Gurnis M, Müeller R D. 2003. Origin of the Australian-Antarctic discordance from an ancient slab and mantle wedge. Geological Society of America Special Papers, 372: 417–429

    Google Scholar 

  13. Hayes D E. 1976. Nature and implications of asymmetric sea-floor spreading-“different rates for different plates”. GSA Bulletin, 87(7): 994–1002, doi: https://doi.org/10.1130/0016-7606(1976)87<994:NAIOAS>2.0.CO;2

    Article  Google Scholar 

  14. Hayes D E. 1988. Age-depth relationships and depth anomalies in the Southeast Indian Ocean and south Atlantic Ocean. Journal of Geophysical Research: Solid Earth, 93(B4): 2937–2954, doi: https://doi.org/10.1029/JB093iB04p02937

    Article  Google Scholar 

  15. Hayes D E, Conolly J R. 1972. Morphology of the Southeast Indian Ocean. In: Hayes D E, ed. Antarctic Oceanology II: The Australian-New Zealand Sector. Washington D C: Wiley, 125–145, doi: https://doi.org/10.1029/AR019p0125

    Google Scholar 

  16. Klein E M, Langmuir C H. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research: Solid Earth, 92(B8): 8089–8115, doi: https://doi.org/10.1029/JB092iB08p08089

    Article  Google Scholar 

  17. Klein E M, Langmuir C H, Staudigel H. 1991. Geochemistry of basalts from the Southeast Indian Ridge, 115°E-138°E. Journal of Geophysical Research: Solid Earth, 96(B2): 2089–2107, doi: https://doi.org/10.1029/90JB01384

    Article  Google Scholar 

  18. Klein E M, Langmuir C H, Zindler A, et al. 1988. Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance. Nature, 333(6174): 623–629, doi: https://doi.org/10.1038/333623a0

    Article  Google Scholar 

  19. Kojima Y, Shinohara M, Mochizuki K, et al. 2003. Seismic velocity structure in the Australian-Antarctic Discordance, Segment B4 revealed by airgun-OBS experiment. In: American Geophysical Union, Fall Meeting 2003, S21F–0396

    Google Scholar 

  20. Kuo Baiyuan, Forsyth D W. 1988. Gravity anomalies of the ridgetransform system in the South Atlantic between 31 and 34.5°S: Upwelling centers and variations in crustal thickness. Marine Geophysical Researches, 10(3-4): 205–232, doi: https://doi.org/10.1007/BF00310065

    Article  Google Scholar 

  21. Lavier L L, Buck W R. 2002. Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting. Journal of Geophysical Research: Solid Earth, 107(B6): 2122, doi: https://doi.org/10.1029/2001JB000513

    Article  Google Scholar 

  22. Lavier L L, Buck W R, Poliakov A N B. 2000. Factors controlling normal fault offset in an ideal brittle layer. Journal of Geophysical Research: Solid Earth, 105(B10): 23431–23442, doi: https://doi.org/10.1029/2000JB900108

    Article  Google Scholar 

  23. Lin J, Purdy G M, Schouten H, et al. 1990. Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge. Nature, 344(6267): 627–632, doi: https://doi.org/10.1038/344627a0

    Article  Google Scholar 

  24. Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006, doi: https://doi.org/10.1029/2007GC001743

    Article  Google Scholar 

  25. Macdonald K C. 1990. A slow but restless ridge. Nature, 348(6297): 108–109, doi: https://doi.org/10.1038/348108a0

    Article  Google Scholar 

  26. MacLeod C J, Searle R C, Murton B J, et al. 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters, 287(3–4): 333–344, doi: https://doi.org/10.1016/j.epsl.2009.08.016

    Article  Google Scholar 

  27. Mahoney J J, Graham D W, Christie D M, et al. 2002. Between a hotspot and a cold spot: Isotopic variation in the Southeast Indian Ridge asthenosphere, 86°E-118°E. Journal of Petrology, 43(7): 1155–1176, doi: https://doi.org/10.1093/petrology/43.7.1155

    Article  Google Scholar 

  28. Marks K M, Vogt P R, Hall S A. 1990. Residual depth anomalies and the origin of the Australian-Antarctic Discordance zone. Journal of Geophysical Research: Solid Earth, 95(B11): 17325–17337, doi: https://doi.org/10.1029/JB095iB11p1732

    Article  Google Scholar 

  29. Ohara Y, Yoshida T, Kato Y, et al. 2001. Giant megamullion in the Parece Vela backarc basin. Marine Geophysical Researches, 22(1): 47–61, doi: https://doi.org/10.1023/A:1004818225642

    Article  Google Scholar 

  30. Okino K, Matsuda K, Christie D M, et al. 2004. Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance. Geochemistry, Geophysics, Geosystems, 5(12): Q12012, doi: https://doi.org/10.1029/2004GC000793

    Article  Google Scholar 

  31. Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39(4): 526–536, doi: https://doi.org/10.1190/1.1440444

    Article  Google Scholar 

  32. Olive J A, Behn M D, Mittelstaedt E, et al. 2016. The role of elasticity in simulating long-term tectonic extension. Geophysical Journal International, 205(2): 728–743, doi: https://doi.org/10.1093/gji/ggw044

    Article  Google Scholar 

  33. Olive J A, Behn M D, Tucholke B E. 2010. The structure of oceanic core complexes controlled by the depth distribution of magma emplacement. Nature Geoscience, 3(7): 491–495, doi: https://doi.org/10.1038/ngeo888

    Article  Google Scholar 

  34. Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4): 447–455, doi: https://doi.org/10.1111/j.1365-246X.1973.tb06513.x

    Article  Google Scholar 

  35. Pyle D G, Christie D M, Mahoney J J. 1992. Resolving an isotopic boundary within the Australian-Antarctic Discordance. Earth and Planetary Science Letters, 112(1-4): 161–178, doi: https://doi.org/10.1016/0012-821X(92)90014-M

    Article  Google Scholar 

  36. Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67, doi: https://doi.org/10.1126/science.1258213

    Article  Google Scholar 

  37. Shaw W J, Lin Jian. 1996. Models of ocean ridge lithospheric deformation: Dependence on crustal thickness, spreading rate, and segmentation. Journal of Geophysical Research: Solid Earth, 101(B8): 17977–17993, doi: https://doi.org/10.1029/96JB00949

    Article  Google Scholar 

  38. Smith D. 2013. Mantle spread across the sea floor. Nature Geoscience, 6(4): 247–248, doi: https://doi.org/10.1038/ngeo1786

    Article  Google Scholar 

  39. Tucholke B E, Behn M D, Buck W R, et al. 2008. Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology, 36(6): 455–458, doi: https://doi.org/10.1130/G24639A.1

    Article  Google Scholar 

  40. Tucholke B E, Lin Jian. 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research: Solid Earth, 99(B6): 11937–11958, doi: https://doi.org/10.1029/94JB00338

    Article  Google Scholar 

  41. Tucholke B E, Lin Jian, Kleinrock M C. 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 103(B5): 9857–9866, doi: https://doi.org/10.1029/98JB00167

    Article  Google Scholar 

  42. Vogt P R, Cherkis N Z, Morgan G A. 1983. Project Investigator-I: Evolution of the Australian-Antarctic Discordance deduced from a detailed aeromagnetic study. In: Oliver R L, James P R, Jago J B, eds. Antarctic Earth Science: 4th International Symposium. Camberra: Cambridge University Press, 608–613

    Google Scholar 

  43. Wang Tingting, Lin Jian, Tucholke B E, et al. 2011. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochemistry, Geophysics, Geosystems, 12(3): Q0AE02, doi: https://doi.org/10.1029/2010GC003402

    Article  Google Scholar 

  44. Weissel J K, Hayes D E. 1971. Asymmetric seafloor spreading south of Australia. Nature, 231(5304): 518–522, doi: https://doi.org/10.1038/231518a0

    Article  Google Scholar 

  45. Zhou Zhiyuan, Lin Jian, Behn M, Olive J A. 2015. Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42(11): 4309–4317, doi: https://doi.org/10.1002/2015GL063917

    Article  Google Scholar 

  46. Zhou Zhiyuan, Lin Jian. 2018. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench. Tectonophysics, 734-735: 59–68, doi: https://doi.org/10.1016/j.tecto.2018.04.008

    Article  Google Scholar 

  47. Zhou Zhiyuan, Lin Jian, Zhang Fan. 2018. Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening. Acta Oceanologica Sinica, 37(11): 53–60, doi: https://doi.org/10.1007/s13131-0181146-z

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Zhou.

Additional information

Foundation item: The National Key R&D Program of China under contract Nos 2018YFC0310105 and 2018YFC0309800; the China Ocean Mineral Resources R&D Association under contract No. DY135-S2-1-04; the National Natural Science Foundation of China under contract Nos 41890813, 91628301, 41976066, 41706056, 41976064, 91858207 and U1606401; the Chinese Academy of Sciences under contract Nos Y4SL021001, QYZDY-SSW-DQC005 and 133244KYSB20180029; the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0205.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Lin, J., Zhou, Z. et al. Large along-axis variations in magma supply and tectonism of the Southeast Indian Ridge near the Australian-Antarctic Discordance. Acta Oceanol. Sin. 39, 118–129 (2020). https://doi.org/10.1007/s13131-019-1518-z

Download citation

Key words

  • Oceanic Core Complexes
  • magma supply
  • Southeast Indian Ridge
  • lithospheric deformation
  • Australian-Antarctic Discordance