The impact of oceanic processes on the transient climate response: a tidal forcing experiment

Abstract

In this study, the impact of oceanic processes on the sensitivity of transient climate change is investigated using two sets of coupled experiments with and without tidal forcing, which are termed Exp_Tide and Exp_Control, respectively. After introducing tidal forcing, the transient climate response (TCR) decreases from 2.32 K to 1.90 K, and the surface air temperature warming at high latitudes decreases by 29%. Large ocean heat uptake efficiency and heat storage can explain the low TCR in Exp_Tide. Approximately 21% more heat is stored in the ocean in Exp_Tide (1.10×1024J) than in Exp_Control (0.91×1024J). Most of the large ocean warming occurs in the upper 1 000 m between 60°S and 60°N, primarily in the Atlantic and Southern Oceans. This ocean warming is closely related to the Atlantic Meridional Overturning Circulation (AMOC). The initial transport at mid- and high latitudes and the decline in the AMOC observed in Exp_Tide are both larger than those observed in Exp_Control. The spatial structures of AMOC are also different with and without tidal forcing in present experiments. The AMOC in Exp_Tide has a large northward extension. We also investigated the relationship between AMOC and TCR suggested by previous studies using the present experiments.

This is a preview of subscription content, log in to check access.

References

  1. Bao Qing, Lin Pengfei, Zhou Tianjun, et al. 2013. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Advances in Atmospheric Sciences, 30(3): 561–576, doi: https://doi.org/10.1007/s00376-012-2113-9

    Article  Google Scholar 

  2. Bao Qing, Wu Guoxiong, Liu Yimin, et al. 2010. An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Advances in Atmospheric Sciences, 27(5): 1131–1142, doi: https://doi.org/10.1007/s00376-010-9177-1

    Article  Google Scholar 

  3. Bitz C M, Gent P R, Woodgate R A, et al. 2006. The influence of sea ice on ocean heat uptake in response to increasing CO2. Journal of Climate, 19(11): 2437–2450, doi: https://doi.org/10.1175/JCLI3756.1

    Article  Google Scholar 

  4. Boé J, Hall A, Qu X. 2009. Deep ocean heat uptake as a major source of spread in transient climate change simulations. Geophysical Research Letters, 36(22): L22701, doi: https://doi.org/10.1029/2009GL040845

    Article  Google Scholar 

  5. Brierley C M, Collins M, Thorpe A J. 2010. The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model. Climate Dynamics, 34(2–3): 325–343, doi: https://doi.org/10.1007/s00382-008-0486-3

    Article  Google Scholar 

  6. Canuto V M, Howard A, Cheng Y, et al. 2001. Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities. Journal of Physical Oceanography, 31(6): 1413–1426, doi: https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2

    Article  Google Scholar 

  7. Collins M, Brierley C M, MacVean M, et al. 2007. The sensitivity of the rate of transient climate change to ocean physics perturbations. Journal of Climate, 20(10): 2315–2320, doi: https://doi.org/10.1175/JCLI4116.1

    Article  Google Scholar 

  8. Collins M, Knutti R, Arblaster J, et al. 2013. Long-term climate change: projections, commitments, and irreversibility. In: Stocker T F, Qin D, Plattner G K, et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press.

    Google Scholar 

  9. Cubasch U, Meehl G A, Boer G J, et al. 2001. Projections of future climate change. In: Houghton J T, Ding Y, Griggs D J, et al, eds. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel. London: Cambridge University Press, 526–582.

    Google Scholar 

  10. Exarchou E, Von Storch J S, Jungclaus J H. 2014. Sensitivity of transient climate change to tidal mixing: Southern Ocean heat uptake climate change experiments performed with ECHAM5/MPIOM. Climate Dynamics, 42(7–8): 1755–1773, doi: https://doi.org/10.1007/s00382-013-1776-y

    Article  Google Scholar 

  11. Flato G, Marotzke J, Abiodun B, et al. 2013. Evaluation of climate models. In: Stocker T F, Qin D W, Plattner G K, et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  12. Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1): 150–160, doi: https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

    Article  Google Scholar 

  13. Gregory J M. 2000. Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dynamics, 16(7): 501–515, doi: https://doi.org/10.1007/s003820000059

    Article  Google Scholar 

  14. Gregory J M, Dixon K W, Stouffer R J, et al. 2005. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophysical Research Letters, 32(12): L12703

    Article  Google Scholar 

  15. Gregory J M, Forster P M. 2008. Transient climate response estimated from radiative forcing and observed temperature change. Journal of Geophysical Research: Atmospheres, 113(D23): D23105, doi: https://doi.org/10.1029/2008JD010405

    Article  Google Scholar 

  16. Gregory J M, Ingram W J, Palmer M A, et al. 2004. A new method for diagnosing radiative forcing and climate sensitivity. Geophysical Research Letters, 31(3): L03205

    Article  Google Scholar 

  17. Griffies S M, Schmidt M, Herzfeld M. 2009a. Elements of mom4p1. GFDL Ocean Group Technical Report No. 6. Geophysical Fluid Dynamics Laboratory, 444. Princeton, USA.

  18. Griffies S M, Biastoch A, Böning C, et al. 2009b. Coordinated oceanice reference experiments (COREs). Ocean Modelling, 26(1–2): 1–46, doi: https://doi.org/10.1016/j.ocemod.2008.08.007

    Article  Google Scholar 

  19. Griffies S M, Winton M, Anderson W G, et al. 2015. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. Journal of Climate, 28(3): 952–977, doi: https://doi.org/10.1175/JCLID-14-00353.1

    Article  Google Scholar 

  20. Guan Yuping, Huang Ruixin. 2008. Stommel’s box model of thermohaline circulation revisited—The role of mechanical energy supporting mixing and the wind-driven gyration. Journal of Physical Oceanography, 38(4): 909–917, doi: https://doi.org/10.1175/2007JPO3535.1

    Article  Google Scholar 

  21. He J, Winton M, Vecchi G, et al. 2017. Transient climate sensitivity depends on base climate ocean circulation. Journal of Climate, 30(4): 1493–1504, doi: https://doi.org/10.1175/JCLI-D-16-0581.1

    Article  Google Scholar 

  22. Held I M, Winton M, Takahashi K, et al. 2010. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. Journal of Climate, 23(9): 2418–2427, doi: https://doi.org/10.1175/2009JCLI3466.1

    Article  Google Scholar 

  23. Holland M M, Bitz C M. 2003. Polar amplification of climate change in coupled models. Climate Dynamics, 21(3–4): 221–232, doi: https://doi.org/10.1007/s00382-003-0332-6

    Article  Google Scholar 

  24. Huang Ruixin. 1999. Mixing and energetics of the oceanic thermohaline circulation. Journal of Physical Oceanography, 29(4): 727–746, doi: https://doi.org/10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2

    Article  Google Scholar 

  25. Huang Boyin, Stone P H, Sokolov A P, et al. 2003. The deep-ocean heat uptake in transient climate change. Journal of Climate, 16(9): 1352–1363, doi: https://doi.org/10.1175/1520-0442-16.9.1352

    Article  Google Scholar 

  26. Kostov Y, Armour K C, Marshall J. 2014. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophysical Research Letters, 41(6): 2108–2116, doi: https://doi.org/10.1002/2013GL058998

    Article  Google Scholar 

  27. Kuhlbrodt T, Gregory J M. 2012. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophysical Research Letters, 39(18): L18608

    Article  Google Scholar 

  28. Levitus S, Antonov J I, Wang Julian, et al. 2001. Anthropogenic warming of Earth’s climate system. Science, 292(5515): 267–270, doi: https://doi.org/10.1126/science.1058154

    Article  Google Scholar 

  29. Lin Pengfei, Liu Hailong, Yu Yongqiang, et al. 2013. Long-term behaviors of two versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations. Advances in Atmospheric Sciences, 30(3): 577–592, doi: https://doi.org/10.1007/s00376-013-2186-0

    Article  Google Scholar 

  30. Liu Hailong, Lin Pengfei, Yu Yongqiang, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26(3): 318–329, doi: https://doi.org/10.1007/s13351-012-0305-y

    Article  Google Scholar 

  31. Meehl G A, Washington W M, Arblaster J M, et al. 2004. Factors affecting climate sensitivity in global coupled models. Journal of Climate, 17(7): 1584–1596, doi: https://doi.org/10.1175/1520-0442(2004)017<1584:FACSIG>2.0.CO;2

    Article  Google Scholar 

  32. Meehl G A, Stocker T F, Collins W D, et al. 2007. Global climate projections. In: Solomon S, Qin D, Manning M, et al, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  33. Munk W, Wunsch C. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45(12): 1977–2010, doi: https://doi.org/10.1016/S0967-0637(98)00070-3

    Article  Google Scholar 

  34. Randall D A, Wood R A, Bony S, et al. 2007. Climate models and their evaluation. In: Solomon S, Qin D, Manning M, et al, eds. Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 589–662.

    Google Scholar 

  35. Raper S C B, Gregory J M, Stouffer R J. 2002. The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. Journal of Climate, 15(1): 124–130, doi: https://doi.org/10.1175/1520-0442(2002)015<0124:TROCSA>2.0.CO;2

    Article  Google Scholar 

  36. Reintges A, Martin T, Latif M, et al. 2017. Uncertainty in twenty-first century projections of the Atlantic Meridional overturning circulation in CMIP3 and CMIP5 models. Climate Dynamics, 49(5–6): 1495–1511, doi: https://doi.org/10.1007/s00382-016-3180-x

    Article  Google Scholar 

  37. Rose B E J, Armour K C, Battisti D S, et al. 2014. The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophysical Research Letters, 41(3): 1071–1078, doi: https://doi.org/10.1002/2013GL058955

    Article  Google Scholar 

  38. Rugenstein M A, Winton M, Stouffer R J, et al. 2013. Northern highlatitude heat budget decomposition and transient warming. Journal of Climate, 26(2): 609–621, doi: https://doi.org/10.1175/JCLI-D-11-00695.1

    Article  Google Scholar 

  39. Schiller A, Fiedler R. 2007. Explicit tidal forcing in an ocean general circulation model. Geophysical Research Letters, 34(3): L03611

    Article  Google Scholar 

  40. Shen Yang, Guan Yuping. 2015. Feature of thermohaline circulation in two-layer conceptual model based on energy constraint. Science China Earth Sciences, 58(8): 1397–1403, doi: https://doi.org/10.1007/s11430-015-5092-8

    Article  Google Scholar 

  41. Solomon S, Qin D, Manning M, et al. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 235–337

    Google Scholar 

  42. Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485–498, doi: https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  43. Weaver A J, Sedláček J, Eby M, et al. 2012. Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 39(20): L20709

    Article  Google Scholar 

  44. Winton M, Takahashi K, Held M. 2010. Importance of ocean heat uptake efficacy to transient climate change. Journal of Climate, 23(9): 2333–2344, doi: https://doi.org/10.1175/2009JCLI3139.1

    Article  Google Scholar 

  45. Winton M, Adcroft A, Griffies S M, et al. 2013. Influence of ocean and atmosphere components on simulated climate sensitivities. Journal of Climate, 26(1): 231–245, doi: https://doi.org/10.1175/JCLI-D-12-00121.1

    Article  Google Scholar 

  46. Winton M, Anderson W G, Delworth T L, et al. 2014. Has coarse ocean resolution biased simulations of transient climate sensitivity. Geophysical Research Letters, 41(23): 8522–8529, doi: https://doi.org/10.1002/2014GL061523

    Article  Google Scholar 

  47. Yu Yi, Liu Hailong, Lan Jian. 2016. The influence of explicit tidal forcing in a climate ocean circulation model. Acta Oceanologica Sinica, 35(9): 42–50, doi: https://doi.org/10.1007/s13131-016-0931-9

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hailong Liu.

Additional information

Foundation item: The National Key Research and Development Program for Developing Basic Sciences under contract Nos 2016YFC1401401 and 2016YFC1401601; the “Strategic Priority Research Program” of the Chinese Academy of Sciences under contract Nos XDA11010304, XDA05110302 and XDC01040100; the National Natural Science Foundation of China under contract Nos 41576026, 41576025, 41776030 and 41931183.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Liu, H., Lin, P. et al. The impact of oceanic processes on the transient climate response: a tidal forcing experiment. Acta Oceanol. Sin. 39, 52–62 (2020). https://doi.org/10.1007/s13131-019-1466-0

Download citation

Key words

  • tidal forcing
  • transient climate response
  • ocean heat uptake
  • Atlantic Meridional Overturning