Acta Oceanologica Sinica

, Volume 37, Issue 2, pp 110–118 | Cite as

Enhanced a novel β-agarase production in recombinant Escherichia coli BL21 (DE3) through induction mode optimization and glycerol feeding strategy

  • Zhuhua Chan
  • Xinglin Chen
  • Yanping Hou
  • Boliang Gao
  • Chungui Zhao
  • Suping Yang
  • Runying Zeng


Agarases are hydrolytic enzymes that act on the hydrolysis of agar and have a broad range of applications in food, cosmetics and pharmaceutical industries. In this study, a glycerol feeding strategy based on induction mode optimization for high cell density and β-agarase production was established, which could effectively control acetate yield. First, exponential feeding strategy of glycerol with different overall specific growth rates (μ) was applied in the pre-induction phase. The results showed that the low μ (μ=0.2) was suggested to be the optimal for cell growth and β-agarase production. Second, the effects of induction temperature and the inducer concentration on cell growth and β-agarase production were investigated in the post-induction phase. When induced by isopropyl-β-d-thiogalactoside (IPTG), the strategy of 0.8 mmol/L IPTG induction at 20°C was found to be optimal for β-agarase production. When cultivation was induced by continuous lactose feeding strategy of 1.0 g/(L·h), the β-agarase activity reached 112.5 U/mL, which represented the highest β-agarase production to date. Furthermore, the β-agarase was capable of degrading G. lemaneiformis powder directly to produce neoagarooligosaccharide, and the hydrolysates were neoagarotetraose (NA4) and neoagarohexaose (NA6). The overall research may be useful for the industrial production and application of β-agarase.


β-agarase Escherichia coli process optimization glycerol feeding strategy neoagarooligosaccharide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araki T, Hayakawa M, Lu Zhang, et al. 1998. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J Mar Biotechnol, 6(4): 260–265Google Scholar
  2. Chan Zhuhua, Wang Runping, Liu Shenglong, et al. 2015. Draft genome sequence of an agar-degrading marine bacterium Flammeovirga pacifica WPAGA1. Mar Genom, 20: 23–24CrossRefGoogle Scholar
  3. Chen Xinglin, Hou Yanping, Jin Min, et al. 2016. Expression and characterization of a novel thermostable and pH-stable β-agarase from deep-sea bacterium Flammeovirga sp. OC4. J Agric Food Chem, 64(38): 7251–7258CrossRefGoogle Scholar
  4. Cheng Jing, Wu Dan, Chen Sheng, et al. 2011. High-level extracellular production of α-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21 (DE3). J Agric Food Chem, 59(8): 3797–3802CrossRefGoogle Scholar
  5. Chi W J, Park J S, Kang D K, et al. 2014. Production and characterization of a novel thermostable extracellular agarase from Pseudoalteromonas hodoensis newly isolated from the west sea of South Korea. Appl Biochem Biotechnol, 173(7): 1703–1716CrossRefGoogle Scholar
  6. Choi H J, Hong J B, Park J J, et al. 2011. Production of agarase from a novel Micrococcus sp. GNUM-08124 strain isolated from the East Sea of Korea. Biotechnol Bioprocess Eng, 16(1): 81–88CrossRefGoogle Scholar
  7. Dong Qi, Ruan Linwei, Shi Hong. 2016. A β-agarase with high pH stability from Flammeovirga sp. SJP92. Carbohyd Res, 432: 1–8CrossRefGoogle Scholar
  8. Dong Jinhua, Tamaru Y, Araki T. 2007. A unique β-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl Microbiol Biotechnol, 74(6): 1248–1255CrossRefGoogle Scholar
  9. Dvorak P, Chrast L, Nikel P I, et al. 2015. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb Cell Fact, 14: 201CrossRefGoogle Scholar
  10. Fang Shuying, Li Jianghua, Liu Long, et al. 2011. Overproduction of alkaline polygalacturonate lyase in recombinant Escherichia coli by a two-stage glycerol feeding approach. Bioresour Technol, 102(22): 10671–10678CrossRefGoogle Scholar
  11. Goyal D, Sahni G, Sahoo D K. 2009. Enhanced production of recombinant streptokinase in Escherichia coli using fed-batch culture. Bioresour Technol, 100(19): 4468–4474CrossRefGoogle Scholar
  12. Han Wenjun, Gu Jingyan, Yan Qiujie, et al. 2012. A polysaccharidedegrading marine bacterium Flammeovirga sp. MY04 and its extracellular agarase system. J Ocean Univ China, 11(3): 375–382CrossRefGoogle Scholar
  13. Hassairi I, Ben Amar R, Nonus M, et al. 2001. Production and separation of α-agarase from Altermonas agarlyticus strain GJ1B. Bioresour Technol, 79(1): 47–51CrossRefGoogle Scholar
  14. Hou Yanping, Chen Xinglin, Chan Zhuhua, et al. 2015. Expression and characterization of a thermostable and pH-stable β- agarase encoded by a new gene from Flammeovirga pacifica WPAGA1. Process Biochem, 50(7): 1068–1075CrossRefGoogle Scholar
  15. Jang M K, Lee D G, Kim N Y, et al. 2009. Purification and characterization of neoagarotetraose from hydrolyzed agar. J Microbiol Biotechnol, 19(10): 1197–1200Google Scholar
  16. Jhamb K, Sahoo D K. 2012. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol, 123: 135–143CrossRefGoogle Scholar
  17. Kilikian B V, Suárez I D, Liria C W, et al. 2000. Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochem, 35(9): 1019–1025CrossRefGoogle Scholar
  18. Kobayashi R, Takisada M, Suzuki T, et al. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol Biochem, 61(1): 162–163CrossRefGoogle Scholar
  19. Lakshmikanth M, Manohar S, Patnakar J, et al. 2006a. Optimization of culture conditions for the production of extracellular agarases from newly isolated Pseudomonas aeruginosa AG LSL-11. World J Microbiol Biotechnol, 22(5): 531–537CrossRefGoogle Scholar
  20. Lakshmikanth M, Manohar S, Souche Y, et al. 2006b. Extracellular β- agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. World J Microbiol Biotechnol, 22(10): 1087–1094CrossRefGoogle Scholar
  21. Lee S B, Park J H, Yoon S C, et al. 2000. Sequence analysis of a β- agarase gene (pjaA) from Pseudomonas sp. isolated from Marine Environment. J Biosci Bioeng, 89(5): 485–488CrossRefGoogle Scholar
  22. Li Jiang, Sha Yujie. 2015. Expression and enzymatic characterization of a cold-adapted β-agarase from Antarctic bacterium Pseudoalteromonas sp. NJ21. Chin J Oceanol Limnol, 33(2): 319–327CrossRefGoogle Scholar
  23. Lin Bokun, Lu Guoyong, Zheng Yandan, et al. 2012. Gene cloning, expression and characterization of a neoagarotetraose-producing β-agarase from the marine bacterium Agarivorans sp. HZ105. World J Microbiol Biotechnol, 28(4): 1691–1697CrossRefGoogle Scholar
  24. Liu Yang, Yi Zhiwei, Cai Yaping, et al. 2015. Draft genome sequence of algal polysaccharides degradation bacterium, Flammeovirga sp. OC4. Mar Genom, 21: 21–22CrossRefGoogle Scholar
  25. Long Mengxian, Yu Ziniu, Xu Xun. 2010. A novel β-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar Biotechnol, 12(1): 62–69CrossRefGoogle Scholar
  26. Malakar P, Venkatesh K V. 2012. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Appl Microbiol Biotechnol, 93(6): 2543–2549CrossRefGoogle Scholar
  27. Miller G L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 31(3): 426–428CrossRefGoogle Scholar
  28. Oh C, Nikapitiya C, Lee Y, et al. 2010. Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. J Ind Microbiol Biotechnol, 37(5): 483–494CrossRefGoogle Scholar
  29. Ramalingam S, Gautam P, Mukherjee K J, et al. 2007. Effects of postinduction feed strategies on secretory production of recombinant streptokinase in Escherichia coli. Biochem Eng J, 33(1): 34–41CrossRefGoogle Scholar
  30. Roseline T L, Sachindra N M. 2016. Characterization of extracellular agarase production by Acinetobacter junii PS12B, isolated from marine sediments. Biocatal Agric Biotechnol, 6: 219–226Google Scholar
  31. Seo Y B, Lu Yan, Chi W J, et al. 2014. Heterologous expression of a newly screened β-agarase from Alteromonas sp. GNUM1 in Escherichia coli and its application for agarose degradation. Process Biochem, 49(3): 430–436Google Scholar
  32. Shokri A, Sandén A, Larsson G. 2003. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol, 60(6): 654–664CrossRefGoogle Scholar
  33. Sugano Y, Terada I, Arita M, et al. 1993. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol, 59(5): 1549–1554Google Scholar
  34. Suzuki H, Sawai Y, Suzuki T, et al. 2003. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J Biosci Bioeng, 95(4): 328–334CrossRefGoogle Scholar
  35. Wang Huilin, Li Xiaoman, Ma Yanhe, et al. 2015. Process optimization of high-level extracellular production of alkaline pectate lyase in recombinant Escherichia coli BL21 (DE3). Biochem Eng J, 93: 38–46CrossRefGoogle Scholar
  36. Wang Jingxue, Mou Haijin, Jiang Xiaolu, et al. 2006. Characterization of a novel β-agarase from marine Alteromonas sp. SY37-12 and its degrading products. Appl Microbiol Biotechnol, 71(6): 833–839CrossRefGoogle Scholar
  37. Xie Wei, Lin Bokun, Zhou Zhengrong, et al. 2013. Characterization of a novel β-agarase from an agar-degrading bacterium Catenovulum sp. X3. Appl Microbiol Biotechnol, 97(11): 4907–4915CrossRefGoogle Scholar
  38. Xu Hui, Fu Yuanyuan, Yang Ning, et al. 2011. Flammeovirga pacifica sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol, 62(4): 937–941Google Scholar
  39. Xu Peng, Gu Qin, Wang Wenya, et al. 2013. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun, 4: 1409CrossRefGoogle Scholar
  40. Xu Zhinan, Liu Gang, Cen Peilin, et al. 2000. Factors influencing excretive production of human epidermal growth factor (hEGF) with recombinant Escherichia coli K12 system. Bioprocess Eng, 23(6): 669–674CrossRefGoogle Scholar
  41. Yang Jinglong, Chen L C, Shih Y Y, et al. 2011. Cloning and characterization of β-agarase AgaYT from Flammeovirga yaeyamensis strain YT. J Biosci Bioeng, 112(3): 225–232CrossRefGoogle Scholar
  42. Yang Meng, Mao Xiangzhao, Liu Nan, et al. 2014. Purification and characterization of two agarases from Agarivorans albus OAY02. Process Biochem, 49(5): 905–912CrossRefGoogle Scholar
  43. Yoshizawa Y, Ametani A, Tsunehiro J, et al. 1995. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure-function relationships and improved solubility. Biosci Biotechnol Biochem, 59(10): 1933–1937CrossRefGoogle Scholar
  44. Zhu Yanbing, Zhao Rui, Xiao Anfeng, et al. 2016. Characterization of an alkaline β-agarase from Stenotrophomonas sp. NTa and the enzymatic hydrolysates. Int J Biol Macromol, 86: 525–534CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhuhua Chan
    • 1
    • 2
  • Xinglin Chen
    • 2
  • Yanping Hou
    • 2
  • Boliang Gao
    • 2
    • 3
  • Chungui Zhao
    • 1
  • Suping Yang
    • 1
  • Runying Zeng
    • 2
  1. 1.Department of Bioengineering and BiotechnologyHuaqiao UniversityXiamenChina
  2. 2.State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of OceanographyState Oceanic AdministrationXiamenChina
  3. 3.School of Life SciencesXiamen UniversityXiamenChina

Personalised recommendations