Advertisement

Acta Oceanologica Sinica

, Volume 37, Issue 4, pp 69–76 | Cite as

Grazing and performance of the copepod Pseudodiaptomus poplesia on a Chinese strain of Aureococcus anophagefferens

  • Xuejia He
  • Didi Han
  • Liuyu Han
  • Songhui Lu
Article
  • 16 Downloads

Abstract

Brown tides have recurred in estuary areas globally, but trophic interactions between the causative species Aureococcus anophagefferens and planktonic copepods remain poorly understood. In this study, we investigated performance (ingestion, growth, development and reproduction) of the planktonic copepod, Pseudodiaptomus poplesia, offered either mono-algal or mixed-algal diets containing a Chinese strain of A. anophagefferens. A typical Michaelis-Menten pattern existed between ingestion rate and food level when copepod fed on the monoalgal diet of this species. Nauplii exhibited the highest maximum ingestion rate (Imax) than copepodids and adult females. In addition, Imax value was higher in nauplii feeding on A. anophagefferens than on Skeletonema costatum. When fed mixtures of A. anophagefferens and S. costatum, P. poplesia selected against A. anophagefferens cells, but less strongly at the naupliar stage. Nauplii did not undergo metamorphosis and died at late naupliar stages feeding on A. anophagefferens alone, similar to those under starvation. Furthermore, the presence of A. anophagefferens greatly reduced the reproduction rate of females in mixtures but did not influence the growth rate of copepodids. These results suggest that P. poplesia nauplii may exert grazing pressure on A. anophagefferens population during a brown tide, which, however, may not be persistent because of copepod population decline.

Keywords

A. anophagefferens copepod grazing growth development reproduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berggreen U, Hansen B, Kiørboe T. 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar Biol, 99(3): 341–352, doi: 10.1007/BF02112126CrossRefGoogle Scholar
  2. Boak A C, Goulder R. 1983. Bacterioplankton in the diet of the calanoid copepod Eurytemora sp. in the Humber Estuary. Mar Biol, 73(2): 139–149, doi: 10.1007/BF00406881CrossRefGoogle Scholar
  3. Bricelj V M, Fisher N S, Guckert J B, et al. 1989. Lipid composition and nutritional value of the brown tide alga Aureococcus anophagefferens. In: Cosper E M, Bricelj V M, Carpenter E J, eds. Novel Phytoplankton Blooms. Berlin Heidelberg: Springer, 85–100CrossRefGoogle Scholar
  4. Bricelj V M, Lonsdale D J. 1997. Aureococcus anophagefferens: causes and ecological consequences of brown tides in U.S. mid-Atl anticcoastal waters. Limnol Oceanogra, 42 (5 part2): 1023–1038, doi: 10.4319/lo.1997.42.5_part_2.1023CrossRefGoogle Scholar
  5. Broglio E, Saiz E, Calbet A, et al. 2004. Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat Microb Ecol, 35(1): 65–78, doi: 10.3354/ame035065CrossRefGoogle Scholar
  6. Brucet S, Compte J, Boix D, et al. 2008. Feeding of nauplii, copepodites and adults of Calanipeda aquaedulcis (Calanoida) in Mediterranean salt marshes. Mar Ecol Prog Ser, 355: 183–191, doi: 10.3354/meps07225CrossRefGoogle Scholar
  7. Buskey E J, Hyatt C J. 1995. Effects of the Texas (USA) ‘brown tide’ alga on planktonic grazers. Mar Ecol Prog Ser, 126: 285–292, doi: 10.3354/meps126285CrossRefGoogle Scholar
  8. Buskey E J, Stockwell D A. 1993. Effects of a persistent ‘brown tide’ on zooplankton populations in the Laguna Madre of South Texas. In: Smayda T J, Shimizu Y, eds. Toxic Phytoplankton Blooms in the Sea. Amsterdam: Elsevier, 659–666Google Scholar
  9. Calbet A, Landry M R, Scheinberg R D. 2000. Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock. Mar Ecol Prog Ser, 193: 75–84, doi: 10.3354/meps193075CrossRefGoogle Scholar
  10. Carlsson P, Granéli E, Olsson P. 1990. Grazer elimination through poisoning: one of the mechanisms behind Chrysochromulina polylepis blooms?. In: Graneli E, Sundstrom B, Edler L, et al., eds. Toxic Marine Phytoplankton. New York: Elsevier, 116–122Google Scholar
  11. Cavanaugh G M. 1956. Formulae and Methods V. of the Marine Biological Laboratory Chemical Room. 5th ed. Woods Hole: Marine Biological Laboratory, 87Google Scholar
  12. Deonarine S N, Gobler C J, Lonsdale D J, et al. 2006. Role of zooplankton in the onset and demise of harmful brown tide blooms (Aureococcus anophagefferens) in US mid-Atlantic estuaries. Aquat Microb Ecol, 44(2): 181–195, doi: 10.3354/ame044181CrossRefGoogle Scholar
  13. Frost B W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr, 17(6): 805–815, doi: 10.4319/lo.1972.17.6.0805CrossRefGoogle Scholar
  14. Gainey L F Jr, Shumway S E. 1991. The physiological effect of Aureococcus anophagefferens (“brown tide”) on the lateral cilia of bivalve mollusks. Biol Bull, 181(2): 298–306, doi: 10.2307/1542101CrossRefGoogle Scholar
  15. Giner J L, Boyer G L. 1998. Sterols of the brown tide alga Aureococcus anophagefferens. Phytochemistry, 48(3): 475–477, doi: 10.1016/S0031-9422(97)00860-1CrossRefGoogle Scholar
  16. Gobler C J, Lonsdale D J, Boyer G L. 2005. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries, 28(5): 726–749, doi: 10.1007/BF02732911CrossRefGoogle Scholar
  17. Guillard R R L, Hargraves P E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 32(3): 234–236, doi: 10.2216/i0031-8884-32-3-234.1CrossRefGoogle Scholar
  18. Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Canadian J Microbiol, 8(2): 229–239CrossRefGoogle Scholar
  19. Ivlev V S. 1961. Experimental Ecology of the Feeding of Fishes. New Haven: Yale University PressGoogle Scholar
  20. Jacobs J. 1974. Quantitative measurement of food selection: a modification of the forage ratio and Ivlev’s electivity index. Oecologia, 14(4): 413–417, doi: 10.1007/BF00384581CrossRefGoogle Scholar
  21. Keller M D, Bellows W K, Guillard R R L. 1989. Dimethylsulfide production and marine phytoplankton: an additional impact of unusual blooms. In: Cosper E M, Bricelj V M, Carpenter E J, eds. Novel Phytoplankton Blooms. Berlin Heidelberg: Springer-Verlag, 101–115CrossRefGoogle Scholar
  22. Lonsdale D J, Cosper E M, Kim W S, et al. 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects. Mar Ecol Prog Ser, 134: 247–263, doi: 10.3354/meps134247CrossRefGoogle Scholar
  23. Martin-Creuzburg D, Von Elert E. 2009. Ecological significance of sterols in aquatic food webs. In: Arts M T, Brett M T, Kainz M, eds. Lipids in Aquatic Ecosystems. New York: Springer, 43–64CrossRefGoogle Scholar
  24. Nejstgaard J C, Gismervik I, Solberg P T. 1997. Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser, 147: 197–217, doi: 10.3354/meps147197CrossRefGoogle Scholar
  25. Paffenhöfer G A, Lewis K D. 1989. Feeding behavior of nauplii of the genus Eucalanus (Copepoda, Calanoida). Mar Ecol Prog Ser, 57: 129–136CrossRefGoogle Scholar
  26. Poulet S A. 1977. Grazing of marine copepod developmental stages on naturally occurring particles. J Fish Res Board Canada, 34(12): 2381–2387CrossRefGoogle Scholar
  27. Probyn T, Pitcher G, Pienaar R, et al. 2001. Brown tides and mariculture in Saldanha bay, South Africa. Mar Pollut Bull, 42(5): 405–408, doi: 10.1016/S0025-326X(00)00170-3CrossRefGoogle Scholar
  28. Smith J K, Lonsdale D J, Gobler C J, et al. 2008. Feeding behavior and development of Acartia tonsa nauplii on the brown tide alga Aureococcus anophagefferens. J Plankton Res, 30(8): 937–950, doi: 10.1093/plankt/fbn050CrossRefGoogle Scholar
  29. Uye S, Iwai Y, Kasahara S. 1983. Growth and production of the inshore marine copepod Pseudodiaptomus marinus in the central part of the Inland Sea of Japan. Mar Biol, 73(1): 91–98, doi: 10.1007/BF00396289CrossRefGoogle Scholar
  30. Zhang Qingchun, Qiu Limei, Yu Rencheng, et al. 2012. Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae, 19: 117–124, doi: 10.1016/j.hal.2012.06.007CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuejia He
    • 1
    • 2
  • Didi Han
    • 1
    • 2
  • Liuyu Han
    • 1
    • 2
    • 3
  • Songhui Lu
    • 1
    • 2
  1. 1.Research Center of Harmful Algae and Marine BiologyJinan UniversityGuangzhouChina
  2. 2.Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education InstitutesJinan UniversityGuangzhouChina
  3. 3.South China Sea Institute of Planning and Environmental ResearchState Oceanic AdministrationGuangzhouChina

Personalised recommendations