Acta Oceanologica Sinica

, Volume 37, Issue 4, pp 34–39 | Cite as

Cytogenetic characterization and description of an X1X1X2X2/X1X2Y sex chromosome system in Collichthys lucidus (Richardson, 1844)

  • Shoukang Zhang
  • Jiao Zheng
  • Jing Zhang
  • Zhiyong Wang
  • Yilei Wang
  • Mingyi Cai
Article

Abstract

The chromosomes of spinyhead croaker Collichthys lucidus (Richardson, 1844) were characterized for the first time by fluorescence staining, self genomic in situ hybridization (self-GISH), and multicolor fluorescence in situ hybridization (FISH) with 18S rDNA, 5S rDNA and telomeric sequence probes. The female karyotype has exclusively 24 pairs of acrocentric chromosomes (2n=48a, NF=48), while the male one consists of 22 pairs of acrocentric chromosomes, 2 monosomic acrocentric chromosomes and a metacentric chromosome (2n=1m+46a, NF=48). The difference between female and male karyotypes indicates the presence of a sex chromosome of X1X1X2X2/X1X2Y type, where Y is the unique metacentric chromosome in the male karyotype. As revealed by FISH, 5S rDNA and 18S rDNA sites were mapped at syntenic position of the largest acrocentric chromosome (X1), and the short arms of the Y chromosome as well. An X1-chromosome specific interstitial telomeric signal (ITS) was detected overlapping the 5S rDNA sites. In addition, self-GISH revealed that the repetitive DNAs accumulated on all the putative sex chromosome. Chromosome fusion accompanied by a partial deletion in the ancestral karyotype (2n=48a) is hypothesized for the origin of such multiple sex chromosome system. The present study, as the first description of differentiated sex chromosome in family Sciaenidae, will give clues to the studies on the sex chromosome of other Sciaenids.

Keywords

Collichthys lucidus karyotype sex chromosome rDNA fluorescence in situ hybridization interstitial telomeric signal (ITS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accioly I V, Molina W F. 2008. Cytogenetic studies in Brazilian marine Sciaenidae and Sparidae fishes (Perciformes). Genet Mol Res, 7(2): 358–370CrossRefGoogle Scholar
  2. Arai R. 2011. Fish Karyotypes: A Check List. Tokyo: Springer, 163–209CrossRefGoogle Scholar
  3. Artoni R F, Bertollo L A C. 2002. Evolutionary aspects of the ZZ/ZW sex chromosome system in the Characidae fish, genus Triportheus. A monophyletic state and NOR location on the W chromosome. Heredity, 89(1): 15–19CrossRefGoogle Scholar
  4. Bitencourt J A, Sampaio I, Ramos R T C, et al. 2017. First report of sex chromosomes in Achiridae (Teleostei: Pleuronectiformes) with inferences about the origin of the multiple X1X1X2X2/X1X2Y system and dispersal of ribosomal genes in Achirus achirus. Zebrafish, 14(1): 90–95CrossRefGoogle Scholar
  5. Blanco D R, Vicari M R, Lui R L, et al. 2014. Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica, 142(2): 119–126Google Scholar
  6. Born G G, Bertollo L A C. 2000. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NORbearing X chromosome. Chromosome Res, 8(2): 111–118CrossRefGoogle Scholar
  7. Chalopin D, Volff J N, Galiana D, et al. 2015. Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res, 23(3): 545–560CrossRefGoogle Scholar
  8. Charlesworth D, Charlesworth B, Marais G. 2005. Steps in the evolution of heteromorphic sex chromosomes. Heredity, 95(2): 118–128CrossRefGoogle Scholar
  9. Chen Songlin, Zhang Guojie, Shao Changwei, et al. 2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet, 46(3): 253–260CrossRefGoogle Scholar
  10. Cheng Jiao, Ma Guoqiang, Miao Zhenqing, et al. 2012. Complete mitochondrial genome sequence of the spinyhead croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogenetic considerations. Mol Biol Rep, 39(4): 4249–4259CrossRefGoogle Scholar
  11. Devlin R H, Nagahama Y. 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 208(3-4): 191–364CrossRefGoogle Scholar
  12. Diniz D, Moreira-Filho O, Bertollo L A C. 2008. Molecular cytogenetics and characterization of a ZZ/ZW sex chromosome system in Triportheus nematurus (Characiformes, Characidae). Genetica, 133(1): 85–91CrossRefGoogle Scholar
  13. Ferreira M, Garcia C, Matoso D A, et al. 2016. A new multiple sex chromosome system X1X1X2X2/X1X2Y in Siluriformes: cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae). Genetica, 144(5): 591–599CrossRefGoogle Scholar
  14. Gold J R, Li Y C, Shipley N S, et al. 1990. Improved methods for working with fish chromosomes with a review of metaphase chromosome banding. J Fish Biol, 37(4): 563–575CrossRefGoogle Scholar
  15. Gornung E. 2013. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res, 141(2-3): 90–102CrossRefGoogle Scholar
  16. Graves J A M. 2006. Sex chromosome specialization and degeneration in mammals. Cell, 124(5): 901–914CrossRefGoogle Scholar
  17. Howell W M, Black D A. 1979. Location of the nucleolus organizer regions on the sex chromosomes of the banded killifish, Fundulus diaphanus. Copeia, 1979(3): 544–546CrossRefGoogle Scholar
  18. Ijdo J W, Wells R A, Baldini A, et al. 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res, 19(17): 4780CrossRefGoogle Scholar
  19. Kitano J, Peichel C L. 2012. Turnover of sex chromosomes and speciation in fishes. Environ Biol Fishes, 94(3): 549–558CrossRefGoogle Scholar
  20. Kitano J, Ross J A, Mori S, et al. 2009. A role for a neo-sex chromosome in stickleback speciation. Nature, 461(7267): 1079–1083CrossRefGoogle Scholar
  21. Levan A, Fredga K, Sandberg A A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52(2): 201–220CrossRefGoogle Scholar
  22. Liao Mengxian, Zheng Jiao, Wang Zhiyong, et al. 2017. Molecular cytogenetic of the Amoy croaker, Argyrosomus amoyensis (Teleostei, Sciaenidae). Chin J Oceanol Limnol, doi: 10.1007/s00343-018-6272-0Google Scholar
  23. Liu Zhiyong, Moore P H, Ma Hao, et al. 2004. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature, 427(6972): 348–352CrossRefGoogle Scholar
  24. Nelson J S, Grande T C, Wilson M V H. 2016. Fishes of the World. 5th ed. New York: John Wiley and Sons Inc, 498–499CrossRefGoogle Scholar
  25. Palacios-Gimenez O M, Castillo E R, Martí D A, et al. 2013. Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences. BMC Evol Biol, 13: 167CrossRefGoogle Scholar
  26. Poltronieri J, Marquioni V, Bertollo L A C, et al. 2013. Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): unequal accumulation on the W chromosomes. Cytogenet Genome Res, 142(1): 40–45CrossRefGoogle Scholar
  27. Reed K M, Phillips R B. 1995. Molecular cytogenetic analysis of the double-CMA3 chromosome of lake trout, Salvelinus namaycush. Cytogenet Cell Genet, 70(1-2): 104–107CrossRefGoogle Scholar
  28. Reed K M, Phillips R B. 1997. Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosome Res, 5(4): 221–227CrossRefGoogle Scholar
  29. Ren X J, Eisenhour L, Hong C S, et al. 1997. Roles of rDNA spacer and transcription unit-sequences in X-Y meiotic chromosome pairing in Drosophila melanogaster males. Chromosoma, 106(1): 29–36CrossRefGoogle Scholar
  30. Ross J A, Peichel C L. 2008. Molecular cytogenetic evidence of rearrangements on the Y chromosome of the threespine stickleback fish. Genetics, 179(4): 2173–2182CrossRefGoogle Scholar
  31. Ross J A, Urton J R, Boland J, et al. 2009. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet, 5(2): e1000391CrossRefGoogle Scholar
  32. She Chaowen, Liu Jingyu, Diao Ying, et al. 2007. The distribution of repetitive DNAs along chromosomes in plants revealed by selfgenomic in situ hybridization. J Genet Genomics, 34(5): 437–448CrossRefGoogle Scholar
  33. Stitou S, Burgos M, Zurita F, et al. 1997. Recent evolution of NORbearing and sex chromosomes of the North African rodent Lemniscomys barbarus. Chromosome Res, 5(7): 481–485CrossRefGoogle Scholar
  34. Uyeno T, Miller R R. 1971. Multiple sex chromosomes in a Mexican cyprinodontid fish. Nature, 231(5303): 452–453CrossRefGoogle Scholar
  35. Yano C F, Poltronieri J, Bertollo L A C, et al. 2014. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): insights into the differentiation of the Z and W chromosomes. PLoS One, 9(3): e90946CrossRefGoogle Scholar
  36. Zheng Jiao, Cao Kuan, Yang Anran, et al. 2016. Chromosome mapping using genomic DNA and repetitive DNA sequences as probes for somatic chromosome identification in Nibea albiflora. J Fish China (in Chinese), 40(8): 1156–1162Google Scholar

Copyright information

© The Chinese Society of Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shoukang Zhang
    • 1
    • 2
  • Jiao Zheng
    • 1
    • 2
  • Jing Zhang
    • 1
    • 2
  • Zhiyong Wang
    • 1
    • 2
  • Yilei Wang
    • 1
    • 2
  • Mingyi Cai
    • 1
    • 2
  1. 1.The Key Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureXiamenChina
  2. 2.Fisheries CollegeJimei UniversityXiamenChina

Personalised recommendations