Organisms Diversity & Evolution

, Volume 18, Issue 3, pp 367–382 | Cite as

Evolution of post-weaning skull ontogeny in New World opossums (Didelphidae)

  • David A. FloresEmail author
  • Norberto Giannini
  • Fernando Abdala
Original Article


Quantification of mammalian skull development has received much attention in the recent literature. Previous results in different lineages have shown an effect of historical legacy on patterns of skull growth. In marsupials, the skull of adults exhibits high variation across species, principally along a size axis. The development keys of the marsupial skull are fundamental to understanding the evolution of skull function in this clade. Its generally well-resolved phylogeny makes the group ideal for studying macroevolution of skull ontogeny. Here, we tested the hypothesis that ontogenetic similarity is correlated with phylogeny in New World marsupials, so that developmental patterns are expected to be conserved from ancestral opossums. We concatenated our previously published ontogenetic cranial data from several opossum species with new ontogenetic sequences and constructed an allometric space on the basis of a set of comparable cranial linear measurements. In this ontogenetic space, we determined the degree of correspondence of developmental patterns and the phylogeny of the group. In addition, we mapped ontogenetic trajectories onto the opossum phylogeny, treating the trajectories as composite, continuously varying characters. Didelphids differed widely in the magnitude of skull allometry across species. Splanchnocranial components exhibited all possible patterns of inter-specific variation, whereas mandibular variables were predominantly allometrically “positive” and neurocranial components were predominantly allometrically “negative.” The distribution of species in allometric space reflected the compounded effect of phylogeny and size variation characteristic of didelphids. The terminal morphology of related species differed in shape, so their ontogenetic trajectories deviated with respect to that of reconstructed common ancestors in varying degree. Phylogeny was the main factor structuring the allometric space of New World marsupials. Didelphids inherited an ancestral constellation of allometry coefficients without change and retained much of it throughout their lineage history. Conserved allometric values on the nodes splitting placental outgroups and marsupials suggest a developmental basis common to all therians.


Didelphidae Evolution Allometric disparity Skull ontogeny 



We thank the curators who allowed the examination of the material under their care: Sergio Lucero of the Museo Argentino de Ciencias Naturales (MACN, Buenos Aires); Bruce Patterson and Bill Stanley of the Field Museum of Natural History (FMNH, Chicago); Kris Helgen, Darrin Lunde, and Linda Gordon of the Smithsonian Institution (USMNH, Washington, D.C.); Rob Voss and Eileen Westwig of the American Museum of Natural History (AMNH, New York); Joao Alves de Oliveira of the Museu Nacional Universidad Federal do Rio de Janeiro (Brazil); and Mario de Vivo of the Museu do Zoología Universidad do Sao Paulo (Brazil). Two anonymous reviewers improved the quality of this manuscript. This work was supported by the Consejo Nacional de Investigaciones Cientificas y Técnicas of Argentina (CONICET); the projects PICT2008-1798, PICT2012-1583, and PICT 2015-2389 of the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (ANPCyT); and the National Research Foundation of South Africa.

Supplementary material

13127_2018_369_MOESM1_ESM.docx (13 kb)
Appendix SI.1 Specimens examined in this study and sample size. Acronyms of collections: AMNH, American Museum of Natural History, New York; FMNH, Field Museum of Natural History, Chicago; MACN, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina; MZUSM, Museu de Zoologia Universidade do Sao Paulo, Brazil; UFRJ; Universidade Federal do Rio de Janeiro, Brazil; USNHM, United Sates Natural History Museum, Smithsonian Institution, Washington DC. (DOCX 13 kb)
13127_2018_369_MOESM2_ESM.docx (5 kb)
Appendix SI.2 R script performed by Giannini et al. (2010) for multivariate statistical analyses (PCA and jackknife resampling). (DOCX 5 kb)
13127_2018_369_MOESM3_ESM.docx (1 kb)
Appendix SI.3 Script for TNT (Goloboff et al. 2008) performed by Prevosti et al. (2010) for the analysis of phylogenetic signal. (DOCX 763 bytes)
13127_2018_369_MOESM4_ESM.xlsx (53 kb)
ESM 1 (XLSX 53 kb)
13127_2018_369_MOESM5_ESM.xlsx (23 kb)
ESM 2 (XLSX 23 kb)
13127_2018_369_MOESM6_ESM.xlsx (13 kb)
ESM 3 (XLSX 13 kb)
13127_2018_369_MOESM7_ESM.xlsx (11 kb)
ESM 4 (XLSX 11 kb)


  1. Abdala, F., Flores, D., & Giannini, N. (2001). Postweaning ontogeny of the skull of Didelphis albiventris. Journal of Mammalogy, 82, 190–200.CrossRefGoogle Scholar
  2. Amador, L., & Giannini, N. (2016). Phylogeny and evolution of body mass in didelphid marsupials (Marsupialia: Didelphimorphia: Didelphidae). Organisms, Diversity and Evolution.
  3. Arthur, W. (2011). Evolution: a developmental approach. Oxford: Wiley Blackwell.Google Scholar
  4. Asher, R., Horovitz, I., & Sánchez-Villagra, M. (2004). First combined cladistic analysis of marsupial mammal interrelationships. Molecular Phylogenetics and Evolution, 33, 240–250.CrossRefPubMedGoogle Scholar
  5. Astúa, D. (2009). Evolution of scapula size and shape in didelphid marsupials (Didelphimorphia: Didelphidae). Evolution, 63, 2438–2456.Google Scholar
  6. Astúa, D. (2015). Order Didelphimorphia. In D. Wilson & R. Mittermeier (Eds.), Handbook of the mammals of the world (Vol. 5. Monotremes and marsupials, pp. 70–187). Barcelona: Lynx Editions.Google Scholar
  7. Astúa, D., & Leiner, O. (2008). Tooth eruption sequence and replacement pattern in woolly opossums, genus Caluromys (Didelphimorphia: Didelphidae). Journal of Mammalogy, 89, 244–251.CrossRefGoogle Scholar
  8. Beck, R. (2008). A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints. Journal of Mammalogy, 89, 175–189.CrossRefGoogle Scholar
  9. Bennett, C. V., & Goswami, A. (2013). Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. BMC Biology, 11, 52. Scholar
  10. Birney, E., & Monjeau, A. (2003). Latitudinal variation in South American marsupial biology. In M. Jones, C. Dickman, & M. Archer (Eds.), Predators with pouches: the biology of carnivorous marsupials (pp. 297–317). Collingwood: CSIRO Publishing.Google Scholar
  11. Butler, R. J., & Goswami, A. (2008). Body size evolution in Mesozoic birds: little evidence for Cope’s rule. Journal of Evolutionary Biology, 21, 1673–1682.CrossRefPubMedGoogle Scholar
  12. Cardini, A., & Polly, P. D. (2013). Larger mammals have longer faces because of size-related constraints on skull form. Nature Communications, 4, 2458.CrossRefPubMedGoogle Scholar
  13. Charles-Dominique, P., Atramentowicz, M., Charles-Dominique, M., Gerard, H., Hladik, C. M., & Prevost, M. F. (1981). Les mammiferes frugivores arboricoles nocturnes d’une foret Guyannaise: inter-relations plantes–animaux. Revue d’Ecologie (La Terre et La Vie), 35, 341–435.Google Scholar
  14. Chemisquy, M. A., Prevosti, F. J., Martin, G., & Flores, D. (2015). Evolution of molar shape in didelphid marsupials (Marsupialia: Didelphidae): analysis of the influence of ecological factors and phylogenetic legacy. Zoological Journal of the Linnean Society, 173, 217–235.CrossRefGoogle Scholar
  15. Clark, C. T., & Smith, K. K. (1993). Cranial osteogenesis in Monodelphis domestica (Didelphidae) and Macropus eugenii (Macropodidae). Journal of Morphology, 215, 119–149.CrossRefPubMedGoogle Scholar
  16. Crompton, A. W. (1989). The evolution of mammalian mastication. In D. B. Wake & J. Roth (Eds.), Complex organismal function: integration and evolution in vertebrates. New York: John Wiley and Sons Ltd..Google Scholar
  17. Díaz-Nieto, J. F., Jansa, S. A., & Voss, R. S. (2016). DNA sequencing reveals unexpected recent diversity and an ancient dichotomy in the American marsupial genus Marmosops (Didelphidae: Thylamyini). Zoological Journal of the Linnean Society, 176, 914–940.CrossRefGoogle Scholar
  18. Emerson, S. B., & Bramble, D. M. (1993). Scaling, allometry and skull design. In J. Hanken & B. K. Hall (Eds.), The skull (pp. 384–416). Chicago: The University of Chicago Press.Google Scholar
  19. Esquerré, D., Sherratt, E., & Keogh, J. S. (2017). Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes. Evolution, 71, 2829–2844.CrossRefPubMedGoogle Scholar
  20. Farris, J. (1970). Methods for computing Wagner trees. Systematic Zoology, 19, 83–92.CrossRefGoogle Scholar
  21. Flannery, T. (1990). Mammals of New Guinea. Australia: Robert Brown & Associates.Google Scholar
  22. Flores, D. A. (2009). Phylogenetic analyses of postcranial skeletal morphology in didelphid marsupials. Bulletin of the American Museum of Natural History, 320, 1–81.CrossRefGoogle Scholar
  23. Flores, D. A., & Casinos, A. (2011). Cranial ontogeny and sexual dimorphism in two New World monkeys: Alouatta caraya (Atelidae) and Cebusapella (Cebidae). Journal of Morphology, 272, 744–757.CrossRefPubMedGoogle Scholar
  24. Flores, D., Giannini, N., & Abdala, F. (2003). Cranial ontogeny of Lutreolina crassicaudata (Didelphidae): a comparison with Didelphis albiventris. Acta Theriologica, 48, 1–9.CrossRefGoogle Scholar
  25. Flores, D., Giannini, N., & Abdala, F. (2006). Comparative postnatal ontogenyof the skull in the australidelphian metatherian Dasyurus albopunctatus (Marsupialia: Dasyuromorpha: Dasyuridae). Journal of Morphology, 267, 426–440.CrossRefPubMedGoogle Scholar
  26. Flores, D. A., Abdala, F., & Giannini, N. (2010). Cranial ontogeny of Caluromys philander (Didelphidae, Caluromyinae): a qualitative and quantitative approach. Journal of Mammalogy, 91, 539–550.CrossRefGoogle Scholar
  27. Flores, D. A., Abdala, F., & Giannini, N. (2013). Post-weaning cranial ontogeny in two bandicoots (Mammalia, Peramelomorphia, Peramelidae) and comparison with carnivorous marsupials. Zoology, 116, 372–384.CrossRefPubMedGoogle Scholar
  28. Flores, D. A., Abdala, F., Martin, G., Giannini, N., & Martinez, J. (2015). Post-weaning cranial growth in shrew opossums (Caenolestidae): a comparison with bandicoots (Peramelidae) and carnivorous marsupials. Journal of Mammalian Evolution, 22, 285–303.CrossRefGoogle Scholar
  29. Gardner, A. L. (Ed.). (2007). Mammals of South America. Vol. 1: Marsupials, xenarthrans, shrews, and bats. Chicago: University of Chicago Press.Google Scholar
  30. Gerber, S., Neige, P., & Eble, G. J. (2007). Combining ontogenetic and evolutionary scales of morphological disparity: a study of early Jurassic ammonites. Evolutionary Development, 9, 472–482.CrossRefGoogle Scholar
  31. Gerber, S., Eble, G. J., & Neige, P. (2008). Allometric space andallometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution, 62, 1450–1457.CrossRefPubMedGoogle Scholar
  32. Gerber, S., Eble, G. J., & Neige, P. (2011). Developmental aspects of morphological disparity dynamics: a simple analytical exploration. Paleobiology, 37, 237–251.CrossRefGoogle Scholar
  33. Giannini, N. (2014). Quantitative developmental data in a phylogenetic framework. Journal of Experimental Zoology, 322, 558–566.CrossRefPubMedGoogle Scholar
  34. Giannini, N., Abdala, F., & Flores, D. A. (2004). Comparative postnatal ontogeny of the skull in Dromiciops gliroides (Marsupialia: Microbiotheriidae). American Museum Novitates, 3460, 1–17.CrossRefGoogle Scholar
  35. Giannini, N., Segura, V., Giannini, M. I., & Flores, D. (2010). A quantitative approach to the cranial ontogeny of the puma. Mammalian Biology, 75, 547–554.CrossRefGoogle Scholar
  36. Goin, F. J., Woodburne, M. O., Zimicz, A. N., Martin, G. M., & Chornogubsky, L. (2016). A brief history of South American metatherians: evolutionary contexts and intercontinental dispersals. New York: Springer.CrossRefGoogle Scholar
  37. Goloboff, P. A., Mattoni, C. I., & Quinteros, A. S. (2006). Continuous characters analyzed as such. Cladistics, 22, 589–601.CrossRefGoogle Scholar
  38. Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.CrossRefGoogle Scholar
  39. Goswami, A., Polly, P. D., Mock, O. B., & Sánchez-Villagra, M. R. (2012). Shape, variance and integration during craniogenesis: contrasting marsupial and placental mammals. Journal of Evolutionary Biology, 25, 862–872.CrossRefPubMedGoogle Scholar
  40. Gould, G. C., & MacFadden, B. J. (2004). Gigantism, dwarfism, and Cope’s rule: “nothing in evolution makes sense without a phylogeny”. Bulletin of the American Museum of Natural History, 285, 219–237.CrossRefGoogle Scholar
  41. Hall, B. K. (2000). Evo-devo or devo-evo—does it matter? Evolution and Development, 2, 177–178.CrossRefPubMedGoogle Scholar
  42. Horovitz, I., & Sánchez-Villagra, M. R. (2003). A morphological analysis of marsupial mammal higher-level phylogenetic relationships. Cladistics, 19, 181–212.CrossRefGoogle Scholar
  43. Horovitz, I., Martin, T., Bloch, J., Ladevèze, S., Kurz, C., & Sánchez-Villagra, M. R. (2009). Cranial anatomy of the earliest marsupials and the origin of opossums. Plos One, 4(12), e8278.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jansa, S. A., Barker, F. K., & Voss, R. S. (2014). The early diversification history of didelphid marsupials: a window into South America’s “Splendid Isolation”. Evolution, 68, 684–695.CrossRefPubMedGoogle Scholar
  45. Jolicoeur, P. (1963). The multivariate generalization of the allometry equation. Biometrics, 19, 497–499.CrossRefGoogle Scholar
  46. Kirsch, J.A.W. (1977). The comparative serology of Marsupialia, and a classification of marsupials. Australian Journal of Zoology Supplementary series, 25, 1–152.Google Scholar
  47. Klingenberg, C. P. (1996). Multivariate allometry. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, & D. E. Slice (Eds.), Advances in morphometrics (pp. 23–49). New York: Plenum Press.CrossRefGoogle Scholar
  48. Klingenberg, C. P., & Froese, R. (1991). A multivariate comparison of allometric growth patterns. Systematic Zoology, 40, 410–419.CrossRefGoogle Scholar
  49. Koyabu, D., Endo, H., Mitgutsch, C., Suwa, G., Catania, K. C., Zollikofer, C. P. E., Oda, S., Koyasu, K., Ando, M., & Sánchez-Villagra, M. R. (2011). Heterochrony and developmental modularity of cranial osteogenesis in lipotyphlan mammals. Evo Devo, 2, 21.Google Scholar
  50. Laurin, M. (2004). The evolution of body size, Cope’s rule and the origin of amniotes. Systematic Biology, 53, 594–622.CrossRefPubMedGoogle Scholar
  51. Leite, Y. L. R., Costa, L. P., & Stallings, J. R. (1996). Diet and vertical space use of three sympatric opossums in a Brazilian Atlantic forest reserve. Journal of Tropical Ecology, 12, 435–440.CrossRefGoogle Scholar
  52. Luo, Z. X., Ji, Q., Wible, J. R., & Yuan, C. X. (2003). An Early Cretaceous tribosphenic mammal and metatherian evolution. Science, 302, 1934–1940.CrossRefPubMedGoogle Scholar
  53. Maier, W. (1993). Cranial morphology of the therian common ancestor, as suggested by the adaptations of neonate marsupials. In F. S. Szalay, M. J. Novacek, & M. C. McKenna (Eds.), Mammal phylogeny: mesozoic differentiation, multituberculates, monotremes, early therians, and marsupials (pp. 166–181). Berlin: Springer-Verlag.Google Scholar
  54. Manly, B. F. J. (1997). Randomization, bootstrap, and Monte Carlo methods in biology (2nd ed.). London: Chapman and Hall.Google Scholar
  55. Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution, 59, 1128–1142.CrossRefPubMedGoogle Scholar
  56. Marroig, G., & Cheverud, J. M. (2010). Size as a line of least resistance II: direct selection on size or correlated response due to constraints? Evolution, 64, 1470–1488.PubMedGoogle Scholar
  57. Marroig, G., Shirai, L. T., Porto, A., Oliveira, F. B., & De Conto, V. (2009). The evolution of modularity in the mammalian skull II: evolutionary consequences. Evolutionary Biology, 36, 136–148.CrossRefGoogle Scholar
  58. Meredith, R. W., Westerman, M., & Springer, M. S. (2008). A timescale and phylogeny for “bandicoots” (Peramelemorphia: Marsupialia) based on sequences for five nuclear genes. Molecular Phylogenetics and Evolution, 47, 1–20.CrossRefPubMedGoogle Scholar
  59. Nilsson, M. A., Arnason, U., Spencer, P. B. S., & Janke, A. (2004). Marsupial relationships and a timeline for marsupial radiation in south Gondwana. Gene, 340, 189–196.CrossRefPubMedGoogle Scholar
  60. Nowak, R. M. (2005). Walker’s marsupials of the world. Baltimore: The John Hopkins University Press.Google Scholar
  61. Palma, R. E., Boric-Bargetto, D., Jayat, J. P., Flores, D. A., Zeballos, H., Pacheco, V., Cancino, R. A., Alfaro, F. A., Rodríguez-Serrano, E., & Pardiñas, U. F. J. (2014). Molecular phylogenetics of mouse opossums: new findings on the phylogeny of Thylamys (Didelphimorphia, Didelphidae). Zoologica Scripta, 43, 217–234.CrossRefGoogle Scholar
  62. Patton, J. L., & da Silva, M. N. F. (1997). Definition of species of pouched four-eyed opossums (Didelphidae, Philander). Journal of Mammalogy, 78, 90–102.CrossRefGoogle Scholar
  63. Pavlicev, M., Kenney Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B., & Cheverud, J. M. (2008). Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution, 62, 199–213.PubMedGoogle Scholar
  64. Pilatti, P. & Astúa, D. (2017). Orbit orientation in didelphid marsupials (Didelphimorphia: Didelphidae). Current Zoology, 63, 403–415.Google Scholar
  65. Porto, A., Oliveira, F. B., Shirai, L. T., De Conto, V., & Marroig, G. (2009). The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evolutionary Biology, 36, 118–135.CrossRefGoogle Scholar
  66. Porto, A., Shirai, L. T., de Oliveira, F. B., & Marroig, G. (2013). Size variation, growth strategies, and the evolution of modularity in the mammalian skull. Evolution, 67, 3305–3322.CrossRefPubMedGoogle Scholar
  67. Prevosti, F., Turazzini, C. F., & Chemisquy, M. A. (2010). Morfología craneana en tigres dientes de sable: alometría. función y filogenia. Ameghiniana, 47, 239–256.Google Scholar
  68. Radinsky, L. B. (1983). Allometry and reorganizationin horse skull proportions. Science, 221, 1189–1191.CrossRefPubMedGoogle Scholar
  69. Radinsky, L. B. (1984). Ontogeny and phylogeny in horse skull evolution. Evolution, 38, 1–15.CrossRefPubMedGoogle Scholar
  70. Raff, R. A. (2000). Evo-devo: the evolution of a new discipline. Nature Reviews Genetics, 1, 74–79.CrossRefPubMedGoogle Scholar
  71. Rasmussen, D. T. (1990). Primate origins: lessons from a Neotropical marsupial. American Journal of Primatology, 22, 263–277.CrossRefGoogle Scholar
  72. Reig, O. A., Kirsch, J. A. W., & Marshall, L. G. (1987). Systematic relationships of the living and neocenozoic American “opossum-like” marsupials (suborder Didelphimorphia), with comments on the classification of these and of the Cretaceous and Paleogene New World and European metatherians. In M. Archer (Ed.), Possums and opossums: studies in evolution (Vol. 1, pp. 1–89). Sydney: Surrey Beatty.Google Scholar
  73. Rougier, G. W., Wible, J. R., & Novacek, M. J. (1998). New specimens of Deltatheridium, implications for the early history of marsupials. Nature, 396, 459–463.CrossRefPubMedGoogle Scholar
  74. Sánchez-Villagra, M. R. (2013). Why are there fewer marsupials than placentals? On the relevance of geography and physiology to evolutionary patterns of mammalian diversity and disparity. Journal of Mammalian Evolution, 20, 279–290.CrossRefGoogle Scholar
  75. Segura, V. (2014). Ontogenia craneana postnatal en cánidos y félidos neotropicales: funcionalidad y patrones evolutivos. PhD thesis, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.Google Scholar
  76. Segura, V., & Prevosti, F. (2012). A quantitative approach to the cranial ontogeny of Lycalopex culpaeus (Carnivora: Canidae). Zoomorphology, 131, 79–92.CrossRefGoogle Scholar
  77. Segura, V., Prevosti, F., & Cassini, G. (2013). Cranial ontogeny in the Puma lineage, Puma concolor, Herpailurus yagouaroundi, and Acinonyx jubatus (Carnivora: Felidae): a three dimensional geometric morphometric approach. Zoological Journal of the Linnean Society, 169, 235–250.CrossRefGoogle Scholar
  78. Segura, V., Prevosti, F., & Cassini, G. (2016). Three-dimensional cranial ontogeny in pantherines (Panthera leo, P. onca, P. pardus, P. tigris; Carnivora, Felidae). Biological Journal of the Linnaean Society.
  79. Shirai, L., & Marroig, G. (2010). Skull modularity in neotropical marsupials and monkeys: size variation and evolutionary constraint and flexibility. Journal Experimental Zoology, 314B, 663–683.CrossRefGoogle Scholar
  80. Solignac, M., Cariou, M. L., & Wimitzki, M. (1990). Variability, specificity and evolution of growth gradients in the species complex Jaera albifrons (Isopoda, Asellota). Crustaceana, 59, 121–145.CrossRefGoogle Scholar
  81. Tanner, J. B., Zelditch, M. L., Lundrigan, B. L., & Holekamp, K. E. (2010). Ontogenetic change in skull morphology and mechanical advantage in the spotted hyena (Crocuta crocuta). Journal of Morphology, 271, 353–365.PubMedGoogle Scholar
  82. Tarnawski, B. A., Cassini, G. H., & Flores, D. (2014). Allometry of the postnatal cranial ontogeny and sexual dimorphism in Otaria byronia (Otariidae). Acta Theriologica, 59, 81.CrossRefGoogle Scholar
  83. Tavares, W. C., Pessoa, L. M., & Seuánez, H. N. (2016). Phylogenetic and size constrains on cranial ontogenetic allometryof spiny rats (Echimyidae, Rodentia). Journal of Evolutionary Biology, 29, 1752–1765.CrossRefPubMedGoogle Scholar
  84. Vieira, E. M., & Astúa, D. (2003). Carnivory and insectivory in Neotropical marsupials. In M. Jones, C. Dickman, & M. Archer (Eds.), Predators with pouches: the biology of carnivorousmarsupials (pp. 271–284). Collingwood: CSIRO.Google Scholar
  85. Voss, R. S., & Jansa, S. (2003). Phylogeneticstudies in didelphid marsupials II. Nonmolecular data and new IRBP sequences: separate and combined analyses of didelphine relationships with denser taxon sampling. Bulletin of the American Museum of Natural History, 276, 1–82.CrossRefGoogle Scholar
  86. Voss, R. S., & Jansa, S. A. (2009). Phylogenetic relationships and classification of didelphid marsupials, an extant radiation of New World metatherian mammals. Bulletin of the AmericanMuseum of Natural History, 322, 1–177.CrossRefGoogle Scholar
  87. Weston E.M. (2003). Evolution of ontogeny in the hipoppotamus skull: using allometry to dissect developmental change. Biological Journal of the Linnean Society, 80, 625–638.Google Scholar
  88. Weisbecker, V., Goswami, A., Wroe, S., & Sánchez-Villagra, M. R. (2008). Ossification heterochrony in the therian postcranial skeleton and the marsupial–placental dichotomy. Evolution, 62, 2027–2041.CrossRefPubMedGoogle Scholar
  89. Wilson, L. (2013). Allometric disparity in rodent evolution. Ecology and Evolution, 3, 971–984.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wilson, L. (2018). The evolution of ontogenetic allometric trajectories in mammalian domestication. Evolution.
  91. Wilson, L., & Sánchez-Villagra, M. R. (2010). Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proceedings of the Royal Society B, 277, 1227–1234.CrossRefPubMedGoogle Scholar
  92. Wroe, S., & Milne, N. (2007). Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evolution, 61, 1251–1260.CrossRefPubMedGoogle Scholar
  93. Zar J.H. (1974). Biostatistical analysis. Upper Saddle River, NJ: Prentice Hall.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2018

Authors and Affiliations

  • David A. Flores
    • 1
    Email author
  • Norberto Giannini
    • 2
  • Fernando Abdala
    • 3
    • 4
  1. 1.Unidad Ejecutora Lillo (Fundación Miguel Lillo-Consejo Nacional de Investigaciones Científicas y Técnicas)Instituto de Vertebrados, Fundación Miguel LilloTucumánArgentina
  2. 2.Unidad Ejecutora Lillo (Fundación Miguel Lillo-Consejo Nacional de Investigaciones Científicas y Técnicas)Cátedra de Biogeografía, Universidad Nacional de TucumánTucumánArgentina
  3. 3.Unidad Ejecutora Lillo (Fundación Miguel Lillo-Consejo Nacional de Investigaciones Científicas y Técnicas)TucumánArgentina
  4. 4.Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations