Post-weaning protein malnutrition induces myocardial dysfunction associated with oxidative stress and altered calcium handling proteins in adult rats


Hypercaloric low-protein diet may lead to a state of malnutrition found in the low-income population of Northeastern Brazil. Although malnutrition during critical periods in the early life is associated with cardiovascular diseases in adulthood, the mechanisms of cardiac dysfunction are still unclear. Here we studied the effects of post-weaning malnutrition due to low protein intake induced by a regional basic diet on the cardiac contractility of young adult rats. In vivo arterial hemodynamic and in vitro myocardial contractility were evaluated in 3-month-old rats. Additionally, protein content of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), total phospholamban (PLB) and phosphorylated at serine 16 (p-Ser(16)-PLB), α2-subunit of the Na(+)/K(+)-ATPase (α2-NKA), and Na(+)/Ca(2+) exchanger (NXC) and in situ production of superoxide anion (O2(-)) were measured in the heart. Blood pressure and heart rate increased in the post-weaning malnourished (PWM) rats. Moreover, malnutrition decreased twitch force and inotropic responses of the isolated cardiac muscle. Protein expression of SERCA, PLB/SERCA, and p-Ser(16)-PLB/PLB ratios and α2-NKA were decreased without changing NCX. The contraction dependent on transsarcolemmal calcium influx was unchanged but responsiveness to Ca(2+) and tetanic peak contractions were impaired in the PWM group. Myocardial O2(-) production was significantly increased by PWM. Our data demonstrated that this hypercaloric low-protein diet in rats is associated with myocardial dysfunction, altered expression of major calcium handling proteins, and increased local oxidative stress. These findings reinforce the attention needed for pediatric care, since chronic malnutrition in early life is related to increased cardiovascular risk in adulthood.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Ávila RA, Silva MASC, Peixoto JV, Kassouf-Silva I, Fogaça RTH, dos Santos L (2016) Mechanisms involved in the in vitro contractile dysfunction induced by different concentrations of ferrous iron in the rat myocardium. Toxicol in Vitro 36:38–45.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Barros MAV, De Brito Alves JL, Nogueira VO et al (2015) Maternal low-protein diet induces changes in the cardiovascular autonomic modulation in male rat offspring. Nutr Metab Cardiovasc Dis 25:123–130.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Bassani JW, Bassani RA, Bers DM (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476:279–293

    CAS  Article  Google Scholar 

  4. 4.

    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bocalini DS, Tucci PJF (2009) Developed force of papillary muscle: what index correctly indicates contractile capacity? Int Heart J 50:643–652.

    Article  PubMed  Google Scholar 

  6. 6.

    Bocalini DS, dos Santos L, Antonio EL et al (2012) Myocardial remodeling after large infarcts in rat converts post rest-potentiation in force decay. Arq Bras Cardiol 98:243–251

    Article  Google Scholar 

  7. 7.

    Brodde O-E, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci 100:323–337.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Ceravolo GS, Franco MCP, Carneiro-Ramos MS, Barreto-Chaves MLM, Tostes RCA, Nigro D, Fortes ZB, Carvalho MHC (2007) Enalapril and losartan restored blood pressure and vascular reactivity in intrauterine undernourished rats. Life Sci 80:782–787.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Cohen MS (2004) Fetal and childhood onset of adult cardiovascular diseases. Pediatr Clin N Am 51:1697–1719, x.

    Article  Google Scholar 

  10. 10.

    de Belchior ACS, Angeli JK, de Faria TO et al (2012) Post-weaning protein malnutrition increases blood pressure and induces endothelial dysfunctions in rats. PLoS One 7:e34876.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    De Belchior ACS, Freire DD, Da Costa CP et al (2016) Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling. J Appl Physiol 120:344–350.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    do Carmo Franco MP, Arruda RMMP, Dantas APV et al (2002) Intrauterine undernutrition: expression and activity of the endothelial nitric oxide synthase in male and female adult offspring. Cardiovasc Res 56:145–153

    Article  Google Scholar 

  13. 13.

    do Carmo Franco MP, Dantas APV, Akamine EH et al (2002) Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero. J Cardiovasc Pharmacol 40:501–509

    Article  Google Scholar 

  14. 14.

    do Carmo Franco CP, Akamine EH, Di Marco GS et al (2003) NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: involvement of the renin-angiotensin system. Cardiovasc Res 59:767–775.

    Article  Google Scholar 

  15. 15.

    Fioretto JR, Querioz SS, Padovani CR, Matsubara LS, Okoshi K, Matsubara BB (2002) Ventricular remodeling and diastolic myocardial dysfunction in rats submitted to protein-calorie malnutrition. Am J Physiol Heart Circ Physiol 282:H1327–H1333.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Franco MCP, Akamine EH, Rebouças N, Carvalho MHC, Tostes RCA, Nigro D, Fortes ZB (2007) Long-term effects of intrauterine malnutrition on vascular function in female offspring: implications of oxidative stress. Life Sci 80:709–715.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Gross SM, Lehman SL (2016) Functional phosphorylation sites in cardiac myofilament proteins are evolutionarily conserved in skeletal myofilament proteins. Physiol Genomics 48:377–387.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hovi P, Andersson S, Räikkönen K et al (2010) Ambulatory blood pressure in young adults with very low birth weight. J Pediatr 156:54–59.e1.

    Article  PubMed  Google Scholar 

  19. 19.

    Hu XW, Levy A, Hart EJ, Nolan LA, Dalton GR, Levi AJ (2000) Intra-uterine growth retardation results in increased cardiac arrhythmias and raised diastolic blood pressure in adult rats. Cardiovasc Res 48:233–243

    CAS  Article  Google Scholar 

  20. 20.

    FAO, PAHO, WFP and UNICEF (2019) Regional overview of food security and nutrition in Latin America and the Caribbean 2020. Santiago.

  21. 21.

    Kuster GM, Lancel S, Zhang J, Communal C, Trucillo MP, Lim CC, Pfister O, Weinberg EO, Cohen RA, Liao R, Siwik DA, Colucci WS (2010) Redox-mediated reciprocal regulation of SERCA and Na+-Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radic Biol Med 48:1182–1187.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lamireau D, Nuyt AM, Hou X, Bernier S, Beauchamp M, Gobeil F Jr, Lahaie I, Varma DR, Chemtob S (2002) Altered vascular function in fetal programming of hypertension. Stroke 33:2992–2998

    Article  Google Scholar 

  23. 23.

    Leite CM, Vassallo DV, Mill JG (1988) The effect of verapamil on potentiated rest contractions in the rat ventricular myocardium. Braz J Med Biol Res = Rev Bras Pesqui medicas e Biol 21:859–862

    CAS  Google Scholar 

  24. 24.

    Leite CM, Vassallo DV, Mill JG (1995) Characteristics of tetanic contractions in caffeine-treated rat myocardium. Can J Physiol Pharmacol 73:638–643

    CAS  Article  Google Scholar 

  25. 25.

    Luo J, Xuan Y-T, Gu Y, Prabhu SD (2006) Prolonged oxidative stress inverts the cardiac force-frequency relation: role of altered calcium handling and myofilament calcium responsiveness. J Mol Cell Cardiol 40:64–75.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Monteiro FM, Lahlou S, Albuquerque JA, Cabral AM (2001) Influence of a multideficient diet from northeastern Brazil on resting blood pressure and baroreflex sensitivity in conscious, freely moving rats. Braz J Med Biol Res = Rev Bras Pesqui medicas e Biol 34:271–280

    CAS  Article  Google Scholar 

  27. 27.

    Nutter DO, Murray TG, Heymsfield SB, Fuller EO (1979) The effect of chronic protein-calorie undernutrition in the rat on myocardial function and cardiac function. Circ Res 45:144–152

    CAS  Article  Google Scholar 

  28. 28.

    Oliveira EL, Cardoso LM, Pedrosa ML, Silva ME, Dun NJ, Colombari E, Moraes MFD, Chianca DA (2004) A low protein diet causes an increase in the basal levels and variability of mean arterial pressure and heart rate in Fisher rats. Nutr Neurosci 7:201–205.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Paixão ADO, Aléssio MLM, Martins JPC, Léger CL, Monnier L, Parés-Herbuté N (2005) Regional Brazilian diet-induced pre-natal malnutrition in rats is correlated with the proliferation of cultured vascular smooth muscle cells. Nutr Metab Cardiovasc Dis 15:302–309.

    Article  PubMed  Google Scholar 

  30. 30.

    Penitente AR, Novaes RD, Chianca DA et al (2013) Protein restriction after weaning modifies the calcium kinetics and induces cardiomyocyte contractile dysfunction in rats. Cells Tissues Organs 198:311–317.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Penitente AR, Novaes RD, Silva ME, Silva MF, Quintão-Júnior JF, Guatimosim S, Cruz JS, Chianca-Jr DA, Natali AJ, Neves CA (2014) Basal and β-adrenergic cardiomyocytes contractility dysfunction induced by dietary protein restriction is associated with downregulation of SERCA2a expression and disturbance of endoplasmic reticulum Ca2+ regulation in rats. Cell Physiol Biochem 34:443–454.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Pissaia O, Rossi MA, Oliveira JSM (1980) The heart in protein-calorie malnutrition in rats: morphological, electrophysiological and biochemical changes. J Nutr 110:2035–2044.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Ransnäs L, Drott C, Lundholm K, Hjalmarson A, Jacobsson B (1989) Effects of malnutrition on rat myocardial beta-adrenergic and muscarinic receptors. Circ Res 64:949–956

    Article  Google Scholar 

  34. 34.

    Ribeiro RF, Potratz FF, Pavan BMM, Forechi L, Lima FLM, Fiorim J, Fernandes AA, Vassallo DV, Stefanon I (2013) Carvedilol prevents ovariectomy-induced myocardial contractile dysfunction in female rat. PLoS One 8:e53226.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sande JB, Sjaastad I, Hoen IB, Bøkenes J, Tønnessen T, Holt E, Lunde PK, Christensen G (2002) Reduced level of serine(16) phosphorylated phospholamban in the failing rat myocardium: a major contributor to reduced SERCA2 activity. Cardiovasc Res 53:382–391

    CAS  Article  Google Scholar 

  36. 36.

    Sawaya AL, Sesso R, de Menezes Toledo Florencio TM et al (2005) Association between chronic undernutrition and hypertension. Matern Child Nutr 1:155–163.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Sesso R, Barreto GP, Neves J, Sawaya AL (2004) Malnutrition is associated with increased blood pressure in childhood. Nephron Clin Pract 97:c61–c66.

    Article  PubMed  Google Scholar 

  38. 38.

    Shanks J, Herring N (2013) Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides. Am J Phys Regul Integr Comp Phys 305:R1411–R1420.

    CAS  Article  Google Scholar 

  39. 39.

    Silva PA, Monnerat-Cahli G, Pereira-Acácio A, Luzardo R, Sampaio LS, Luna-Leite MA, Lara LS, Einicker-Lamas M, Panizzutti R, Madeira C, Vieira-Filho LD, Castro-Chaves C, Ribeiro VS, Paixão ADO, Medei E, Vieyra A (2014) Mechanisms involving Ang II and MAPK/ERK1/2 signaling pathways underlie cardiac and renal alterations during chronic undernutrition. PLoS One 9:e100410.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Suzuki S, Kaneko M, Chapman DC, Dhalla NS (1991) Alterations in cardiac contractile proteins due to oxygen free radicals. Biochim Biophys Acta 1074:95–100.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Tang WH, Cheng WT, Kravtsov GM, Tong XY, Hou XY, Chung SK, Chung SSM (2010) Cardiac contractile dysfunction during acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative stress. Am J Phys Cell Phys 299:C643–C653.

    CAS  Article  Google Scholar 

  42. 42.

    Tennant IA, Barnett AT, Thompson DS et al (2014) Impaired cardiovascular structure and function in adult survivors of severe acute malnutrition. Hypertens (Dallas, Tex 1979) 64:664–671.

    CAS  Article  Google Scholar 

  43. 43.

    Teodósio NR, Lago ES, Romani SA, Guedes RC (1990) A regional basic diet from northeast Brazil as a dietary model of experimental malnutrition. Arch Latinoam Nutr 40:533–547

    PubMed  Google Scholar 

  44. 44.

    Tropia FC, Cardoso LM, Pedrosa ML, Silva ME, Haibara AS, Moraes MFD, Chianca DA Jr (2001) Effects of low-protein diet on the baroreflex and Bezold-Jarisch reflex in conscious rats. Nutr Neurosci 4:99–107

    CAS  Article  Google Scholar 

  45. 45.

    Vassallo DV, Mill JG (1988) Mechanical behavior of rest contractions in cardiac muscle. Acta Physiol Pharmacol Ther Latinoam 38:87–97

    CAS  Google Scholar 

  46. 46.

    Xu KY, Zweier JL, Becker LC (1997) Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2+)-ATPase function by direct attack on the ATP binding site. Circ Res 80:76–81.

    CAS  Article  PubMed  Google Scholar 

Download references


This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – Finance code 001); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Grants 303077/2017-4; 304557/2018-8; 433632/2018-6); and Fundação de Amparo à Pesquisa do Espírito Santo (FAPES - Grant 80707483 Universal 03/2017; 80600115, 73370215). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information




Conceptualization: Aucélia Cristina Soares Belchior, Carlos Peres da Costa, Dalton Valentim Vassallo, and Alessandra Simão Padilha

Methodology: Aucélia Cristina Soares Belchior and David Domingues Freire-Júnior

Formal analysis and investigation: Aucélia Cristina Soares Belchior, David Domingues Freire-Júnior, Leonardo dos Santos, and Alessandra Simão Padilha

Writing—original draft preparation: Leonardo dos Santos and Alessandra Simão Padilha

Writing—review and editing: Dalton Valentim Vassallo, Leonardo dos Santos, and Alessandra Simão Padilha

Funding acquisition: Dalton Valentim Vassallo, Leonardo dos Santos, and Alessandra Simão Padilha

Corresponding author

Correspondence to Leonardo dos Santos.

Ethics declarations

Ethics approval

All protocols were approved by the Institutional Ethics Committee (no. 23076.008507/2010-160).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability (software application or custom code)

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points:

Post-weaning malnutrition leads to cardiac dysfunction in young adult rats.

Reduced inotropic responsiveness was a result of changes in the Ca2+ handling.

Increased myocardial oxidative stress may also be involved in cardiac dysfunction.

Adequate nutrition in early life should reduce cardiovascular risk in adulthood.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belchior, A.C.S., Freire-Júnior, D.D., Da Costa, C.P. et al. Post-weaning protein malnutrition induces myocardial dysfunction associated with oxidative stress and altered calcium handling proteins in adult rats. J Physiol Biochem (2021).

Download citation


  • Hypercaloric low-protein diet
  • Undernutrition
  • Cardiac contractility
  • Ca2+ handling
  • Reactive oxygen species
  • Papillary muscle mechanics