Lactosylceramide induced by elastin-derived peptides decreases adipocyte differentiation

Abstract

Elastin, the major protein of the extracellular matrix, is specially found in cardiovascular tissues and contributing to 30–50% of the dry weight of blood vessels. Elastin regulates cell signalling pathways involved in morphogenesis, injury response and inflammation. The function of elastin is frequently compromised in damaged or aged elastic tissues. Indeed, elastin degradation, observed during ageing, and the resulting production of elastin-derived peptides (EDPs), have crucial impacts on cardiovascular disease (atherosclerosis, thrombosis) or on metabolism disease progressions (type 2 diabetes or non-alcoholic steatohepatitis). In the present study, we analysed the EDP effects on 3T3 preadipocyte cell differentiation. In a first part, we treated 3T3-L1 cells with EDP and visualized the lipid droplet accumulation by the oil red O staining and measured the expression of various transcription factors and adipocyte-specific mRNAs by real-time RT-PCR. We demonstrated that the elastin receptor complex, ERC, is activated by EDPs and decreased adipocyte differentiation by a modulation of crucial adipogenesis transcriptional factor particularly PPARγ. In a second part, we identified the signalling pathway implicated in EDP-reduced cell differentiation. The flow cytometry and immunocytochemistry approaches showed that ERC activated by EDP produced a second messenger, lactosylceramide (Lac-Cer). Moreover, this Lac-Cer production favoured the phosphorylation of ERK1–2 (p-ERK1–2), to decrease adipocyte differentiation by a modulation of adipogenesis transcriptional factor PPARγ. To conclude, the EDP/Lac-Cer/p-ERK1–2 signalling pathway may be studied further as a critical target for treating complications associated with adipocyte dedifferentiation such as obesity and diabetes insulin resistance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272(8):5128–5132. https://doi.org/10.1074/jbc.272.8.5128

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bashur CA, Venkataraman L, Ramamurthi A (2012) Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly. Tissue Eng Part B Rev 18(3):203–217. https://doi.org/10.1089/ten.TEB.2011.0521

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bennasroune A, Romier-Crouzet B, Blaise S, Laffargue M, Efremov RG, Martiny L, Maurice P, Duca L (2019) Elastic fibers and elastin receptor complex: neuraminidase-1 takes the center stage. Matrix Biol. https://doi.org/10.1016/j.matbio.2019.06.007

  4. 4.

    Blaise S, Kneib M, Rousseau A, Gambino F, Chenard MP, Messadeq N, Muckenstrum M, Alpy F, Tomasetto C, Humeau Y, Rio MC (2012) In vivo evidence that TRAF4 is required for central nervous system myelin homeostasis. PLoS One 7(2):e30917. https://doi.org/10.1371/journal.pone.0030917

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Blaise S, Romier B, Kawecki C, Ghirardi M, Rabenoelina F, Baud S, Duca L, Maurice P, Heinz A, Schmelzer CE, Tarpin M, Martiny L, Garbar C, Dauchez M, Debelle L, Durlach V (2013) Elastin-derived peptides are new regulators of insulin resistance development in mice. Diabetes 62(11):3807–3816. https://doi.org/10.2337/db13-0508

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bost F, Caron L, Marchetti I, Dani C, LE Marchand-Brustel Y, Binetruy B (2002) Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J 361(Pt 3):621–627. https://doi.org/10.1042/0264-6021:3610621

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Camp HS, Tafuri SR (1997) Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 272(16):10811–10816. https://doi.org/10.1074/jbc.272.16.10811

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Chavez JA, Siddique MM, Wang ST, Ching J, Shayman JA, Summers SA (2014) Ceramides and glucosylceramides are independent antagonists of insulin signaling. J Biol Chem 289(2):723–734. https://doi.org/10.1074/jbc.M113.522847

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Derosa G, Ferrari I, D'angelo A, Tinelli C, Salvadeo SA, Ciccarelli L, Piccinni MN, Gravina A, Ramondetti F, Maffioli P, Cicero AF (2008) Matrix metalloproteinase-2 and -9 levels in obese patients. Endothelium 15(4):219–224. https://doi.org/10.1080/10623320802228815

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Duca L, Lambert E, Debret R, Rothhut B, Blanchevoye C, Delacoux F, Hornebeck W, Martiny L, Debelle L (2005) Elastin peptides activate extracellular signal-regulated kinase 1/2 via a Ras-independent mechanism requiring both p110gamma/Raf-1 and protein kinase A/B-Raf signaling in human skin fibroblasts. Mol Pharmacol 67(4):1315–1324. https://doi.org/10.1124/mol.104.002725

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Duca L, Blanchevoye C, Cantarelli B, Ghoneim C, Dedieu S, Delacoux F, Hornebeck W, Hinek A, Martiny L, Debelle L (2007) The elastin receptor complex transduces signals through the catalytic activity of its Neu-1 subunit. J Biol Chem 282(17):12484–12491. https://doi.org/10.1074/jbc.M609505200

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Farooqi IS, O'rahilly S (2004) Monogenic human obesity syndromes. Recent Prog Horm Res 59:409–424

    CAS  Article  Google Scholar 

  13. 13.

    Fontdemora J, Porras A, Ahn N, Santos E (1997) Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation. Mol Cell Biol 17(10):6068–6075. https://doi.org/10.1128/mcb.17.10.6068

    CAS  Article  Google Scholar 

  14. 14.

    Gayral S, Garnotel R, Castaing-Berthou A, Blaise S, Fougerat A, Berge E, Montheil A, Malet N, Wymann MP, Maurice P, Debelle L, Martiny L, Martinez LO, Pshezhetsky AV, Duca L, Laffargue M (2014) Elastin-derived peptides potentiate atherosclerosis through the immune Neu1-PI3Kgamma pathway. Cardiovasc Res 102(1):118–127. https://doi.org/10.1093/cvr/cvt336

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Han J, Choi HY, Dayem AA, Kim K, Yang G, Won J, Do SH, Kim JH, Jeong KS, Cho SG (2017) Regulation of adipogenesis through differential modulation of ROS and kinase signaling pathways by 3,4′-dihydroxyflavone treatment. J Cell Biochem 118(5):1065–1077. https://doi.org/10.1002/jcb.25681

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hauser S, Adelmant G, Sarraf P, Wright HM, Mueller E, Spiegelman BM (2000) Degradation of the peroxisome proliferator-activated receptor gamma is linked to ligand-dependent activation. J Biol Chem 275(24):18527–18533. https://doi.org/10.1074/jbc.M001297200

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Heinz A, Jung MC, Duca L, Sippl W, Taddese S, Ihling C, Rusciani A, Jahreis G, Weiss AS, Neubert RH, Schmelzer CE (2010) Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines. FEBS J 277(8):1939–1956. https://doi.org/10.1111/j.1742-4658.2010.07616.x

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Hu J, Roy SK, Shapiro PS, Rodig SR, Reddy SP, Platanias LC, Schreiber RD, Kalvakolanu DV (2001) ERK1 and ERK2 activate CCAAAT/enhancer-binding protein-beta-dependent gene transcription in response to interferon-gamma. J Biol Chem 276(1):287–297. https://doi.org/10.1074/jbc.M004885200

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kawecki C, Hezard N, Bocquet O, Poitevin G, Rabenoelina F, Kauskot A, Duca L, Blaise S, Romier B, Martiny L, Nguyen P, Debelle L, Maurice P (2014) Elastin-derived peptides are new regulators of thrombosis. Arterioscler Thromb Vasc Biol 34(12):2570–2578. https://doi.org/10.1161/ATVBAHA.114.304432

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Kielty CM (2006) Elastic fibres in health and disease. Expert Rev Mol Med 8(19):1–23. https://doi.org/10.1017/s146239940600007x

    Article  PubMed  Google Scholar 

  21. 21.

    Kim SW, Muise AM, Lyons PJ, Ro HS (2001) Regulation of adipogenesis by a transcriptional repressor that modulates MAPK activation. J Biol Chem 276(13):10199–10206. https://doi.org/10.1074/jbc.M010640200

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kwak DH, Lee JH, Kim T, Ahn HS, Cho WK, Ha H, Hwang YH, Ma JY (2012) Aristolochia manshuriensis Kom inhibits adipocyte differentiation by regulation of ERK1/2 and Akt pathway. PLoS One 7(11):e49530. https://doi.org/10.1371/journal.pone.0049530

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Landrier JF, Gouranton E, EL Yazidi C, Malezet C, Balaguer P, Borel P, Amiot MJ (2009) Adiponectin expression is induced by vitamin E via a peroxisome proliferator-activated receptor gamma-dependent mechanism. Endocrinology 150(12):5318–5325. https://doi.org/10.1210/en.2009-0506

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lin Chun TH, Kang L (2016) Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol 119:8–16. https://doi.org/10.1016/j.bcp.2016.05.005

    CAS  Article  Google Scholar 

  25. 25.

    Lodhi IJ, Semenkovich CF (2014) Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab 19(3):380–392. https://doi.org/10.1016/j.cmet.2014.01.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Machinal-Quelin F, Dieudonne MN, Leneveu MC, Pecquery R, Giudicelli Y (2002) Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK and STAT3 signaling pathways. Am J Physiol Cell Physiol 282(4):C853–C863. https://doi.org/10.1152/ajpcell.00331.2001

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Maclean PS, Blundell JE, Mennella JA, Batterham RL (2017) Biological control of appetite: a daunting complexity. Obesity (Silver Spring) 25(Suppl 1):S8–S16. https://doi.org/10.1002/oby.21771

    Article  Google Scholar 

  28. 28.

    Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang JY, Khan AR, Aubert G, Candelaria K, Thomas S, Shin DJ, Booth S, Baig SM, Bilal A, Hwang D, Zhang H, Lovell-Badge R, Smith SR, Awan FR, Jiang ZY (2013) Imbalance between neutrophil elastase and its inhibitor alpha1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab 17(4):534–548. https://doi.org/10.1016/j.cmet.2013.03.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Martinez-Santibanez G, Singer K, Cho KW, Delproposto JL, Mergian T, Lumeng CN (2015) Obesity-induced remodeling of the adipose tissue elastin network is independent of the metalloelastase MMP-12. Adipocyte 4(4):264–272. https://doi.org/10.1080/21623945.2015.1027848

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Maurice P, Blaise S, Gayral S, Debelle L, Laffargue M, Hornebeck W, Duca L (2013) Elastin fragmentation and atherosclerosis progression: the elastokine concept. Trends Cardiovasc Med 23(6):211–221. https://doi.org/10.1016/j.tcm.2012.12.004

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Mecham RP, Hinek A, Griffin GL, Senior RM, Liotta LA (1989) The elastin receptor shows structural and functional similarities to the 67-kDa tumor cell laminin receptor. J Biol Chem 264(28):16652–16657

    CAS  PubMed  Google Scholar 

  32. 32.

    Motrescu ER, Blaise S, Etique N, Messaddeq N, Chenard MP, Stoll I, Tomasetto C, Rio MC (2008) Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions. Oncogene 27(49):6347–6355. https://doi.org/10.1038/onc.2008.218

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng C-F, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross J Jr, Honjo T, Chien KR (2002) Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415(6868 (01/10/print)):171–175. http://www.nature.com/nature/journal/v415/n6868/suppinfo/415171a_S1.html

    CAS  Article  Google Scholar 

  34. 34.

    Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130(12):3122S–3126S. https://doi.org/10.1093/jn/130.12.3122S

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Pardo A, Selman M (1999) Proteinase-antiproteinase imbalance in the pathogenesis of emphysema: the role of metalloproteinases in lung damage. Histol Histopathol 14(1):227–233. https://doi.org/10.14670/HH-14.227

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17(11):1352–1365. https://doi.org/10.1101/gad.1089403

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Privitera S, Prody CA, Callahan JW, Hinek A (1998) The 67-kDa enzymatically inactive alternatively spliced variant of beta-galactosidase is identical to the elastin/laminin-binding protein. J Biol Chem 273(11):6319–6326. https://doi.org/10.1074/jbc.273.11.6319

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Prokazova NV, Samovilova NN, Gracheva EV, Golovanova NK (2009) Ganglioside GM3 and its biological functions. Biochemistry (Mosc) 74(3):235–249

    CAS  Article  Google Scholar 

  39. 39.

    Rochford JJ (2014) Mouse models of lipodystrophy and their significance in understanding fat regulation. Curr Top Dev Biol 109:53–96. https://doi.org/10.1016/B978-0-12-397920-9.00005-6

    Article  PubMed  Google Scholar 

  40. 40.

    Romier B, Ivaldi C, Sartelet H, Heinz A, Schmelzer CEH, Garnotel R, Guillot A, Jonquet J, Bertin E, Gueant JL, Alberto JM, Bronowicki JP, Amoyel J, Hocine T, Duca L, Maurice P, Bennasroune A, Martiny L, Debelle L, Durlach V, Blaise S (2018) Production of elastin-derived peptides contributes to the development of nonalcoholic steatohepatitis. Diabetes 67(8):1604–1615. https://doi.org/10.2337/db17-0490

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Rusciani A, Duca L, Sartelet H, Chatron-Colliet A, Bobichon H, Ploton D, LE Naour R, Blaise S, Martiny L, Debelle L (2010) Elastin peptides signaling relies on neuraminidase-1-dependent lactosylceramide generation. PLoS One 5(11):e14010. https://doi.org/10.1371/journal.pone.0014010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806. https://doi.org/10.1038/414799a

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Scandolera A, Rabenoelina F, Chaintreuil C, Rusciani A, Maurice P, Blaise S, Romier-Crouzet B, EL Btaouri H, Martiny L, Debelle L, Duca L (2015) Uncoupling of elastin complex receptor during in vitro aging is related to modifications in its intrinsic sialidase activity and the subsequent lactosylceramide production. PLoS One 10(6):e0129994. https://doi.org/10.1371/journal.pone.0129994

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL (2017) Obesity pathogenesis: an Endocrine Society scientific statement. Endocr Rev 38(4):267–296. https://doi.org/10.1210/er.2017-00111

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Shimba S, Wada T, Tezuka M (2001) Arylhydrocarbon receptor (AhR) is involved in negative regulation of adipose differentiation in 3T3-L1 cells: AhR inhibits adipose differentiation independently of dioxin. J Cell Sci 114(Pt 15):2809–2817

    CAS  PubMed  Google Scholar 

  46. 46.

    Spencer M, Unal R, Zhu B, Rasouli N, Mcgehee RE Jr, Peterson CA, Kern PA (2011) Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol Metab 96(12):E1990–E1998. https://doi.org/10.1210/jc.2011-1567

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Szychowski KA, Gminski J (2019) Impact of elastin-derived VGVAPG peptide on bidirectional interaction between peroxisome proliferator-activated receptor gamma (Ppargamma) and beta-galactosidase (beta-Gal) expression in mouse cortical astrocytes in vitro. Naunyn Schmiedebergs Arch Pharmacol 392(4):405–413. https://doi.org/10.1007/s00210-018-1591-4

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Taleb S, Clement K (2007) Emerging role of cathepsin S in obesity and its associated diseases. Clin Chem Lab Med 45(3):328–332. https://doi.org/10.1515/CCLM.2007.083

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, Mcnelis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM (2012) Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18(9):1407–1412. https://doi.org/10.1038/nm.2885

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Tanabe Y, Koga M, Saito M, Matsunaga Y, Nakayama K (2004) Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARgamma2. J Cell Sci 117(Pt 16):3605–3614. https://doi.org/10.1242/jcs.01207

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Wahart A, Hocine T, Albrecht C, Henry A, Sarazin T, Martiny L, EL Btaouri H, Maurice P, Bennasroune A, Romier-Crouzet B, Blaise S, Duca L (2019) Role of elastin peptides and elastin receptor complex in metabolic and cardiovascular diseases. FEBS J. https://doi.org/10.1111/febs.14836

  52. 52.

    Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB (2010) Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem 285(44):33623–33631. https://doi.org/10.1074/jbc.M109.085084

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Wong H, Prévoteau-Jonquet J, Baud B, Dauchez M, Belloy N (2018) Mesoscopic rigid body modelling of the extracellular matrix self-assembly. J Integr Bioinformatics:6–11

  54. 54.

    Yun Z, Maecker HL, Johnson RS, Giaccia AJ (2002) Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2(3):331–341

    CAS  Article  Google Scholar 

  55. 55.

    Zhang B, Berger J, Zhou G, Elbrecht A, Biswas S, White-Carrington S, Szalkowski D, Moller DE (1996) Insulin- and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor gamma. J Biol Chem 271(50):31771–31774. https://doi.org/10.1074/jbc.271.50.31771

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Stephane Betoulle for her technical support with flow cytometry. This work was supported by the University of Reims Champagne-Ardenne and the Centre National de la Recherche Scientifique (CNRS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hassan EL Btaouri.

Ethics declarations

We confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. This work does not involve humans or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

KEY points

Elastin-derived peptides (EDPs) decreased PPARγ expression.

EDPs reduced adipocyte differentiation.

Adipocyte differentiation is reduced by Lac-cer production and ERK1/2 activation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hocine, T., Blaise, S., Hachet, C. et al. Lactosylceramide induced by elastin-derived peptides decreases adipocyte differentiation. J Physiol Biochem (2020). https://doi.org/10.1007/s13105-020-00755-z

Download citation

Keywords

  • Elastin-derived peptides
  • PPARγ
  • Adipocyte
  • Lactosylceramide
  • Differentiation
  • ERK