Skip to main content

Advertisement

Log in

Caveolin-1 promotes Rfng expression via Erk-Jnk-p38 signaling pathway in mouse hepatocarcinoma cells

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Caveolin-1 (Cav-1) is a critical structural protein of caveolae and plays an oncogene-like role by participating in abnormal protein glycosylation in hepatocellular carcinoma (HCC). However, the mechanism by which Cav-1 regulates glycosylation and glycosyltransferase expression has not been completely defined. Here, we show that Cav-1 promotes the expression of Rfng, which is a β-1,3-N-acetylglucosaminyltransferase included in the Fringe family. In this study, we showed that the mouse HCC cell line, Hepa1–6, with low Rfng transcription and protein levels, lacked Cav-1 expression, whereas strong Rfng expression was found in the mouse HCC cell line Hca-F, with high transcription and protein levels for Cav-1. Subsequently Cav-1 overexpression in Hepa1–6 was found to activate mitogen-activated protein kinase (MAPK) signaling and induce phosphorylation of the transcription factors Hnf4a and Sp1, which bind to the Rfng promoter region to promote its transcription. On the contrary, when knocking down Cav-1 expression in Hca-F, the activity of the MAPK pathway was significantly inhibited, and phosphorylation of Hnf4a, Sp1 and the expression of Rfng were attenuated. These data reveal that Cav-1 promotes phosphorylation of transcription factors Hnf4a and Sp1, which bind to the Rfng promoter region, via the MAPK signaling pathway, to induce the transcription of Rfng. Our current findings provide molecular genetic evidence that Cav-1 plays an important role in regulating glycosyltransferase expression and may participate in the abnormal glycosylation that mediates the invasion and metastasis of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–g
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aster JC, Pear WS, Blacklow SC (2017) The Varied Roles of Notch in Cancer. Annu Rev Pathol 12:245–275

    Article  CAS  Google Scholar 

  2. Dennis JW, Granovsky M, Warren CE (1999) Protein glycosylation in development and disease. Bioessays 21:412–421

    Article  CAS  Google Scholar 

  3. Fernandez-Rojo MA, Ramm GA (2016) Caveolin-1 function in liver physiology and disease. Trends Mol Med 22:889–904

    Article  CAS  Google Scholar 

  4. Haines N, Irvine KD (2003) Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 4:786–797

    Article  CAS  Google Scholar 

  5. Hoseth EZ, Krull F, Dieset I, Morch RH, Hope S, Gardsjord ES, Steen NE, Melle I, Brattbakk HR, Steen VM, Aukrust P, Djurovic S, Andreassen OA, Ueland T (2018) Attenuated Notch signaling in schizophrenia and bipolar disorder. Sci Rep 8:5349

    Article  Google Scholar 

  6. Hu H, Han T, Zhuo M, Wu LL, Yuan C, Wu L, Lei W, Jiao F, Wang LW (2017) Elevated COX-2 expression promotes angiogenesis through EGFR/p38-MAPK/Sp1-dependent signalling in pancreatic cancer. Sci Rep 7:470

    Article  Google Scholar 

  7. Huang H, Liu Y, Yu P, Qu J, Guo Y, Li W, Wang S, Zhang J (2018) MiR-23a transcriptional activated by Runx2 increases metastatic potential of mouse hepatoma cell via directly targeting Mgat3. Sci Rep 8:7366

    Article  Google Scholar 

  8. Jia L, Wang S, Zhou H, Cao J, Hu Y, Zhang J (2006) Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines. Int J Biochem Cell Biol 38:1584–1593

    Article  CAS  Google Scholar 

  9. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, Yin X, Ren X, Huang L, Ye Z, Chen W, Zhang F, Mi J, Gao Z, Wang S, Chen Q, Xing L, Wang B, Cao Y, Sessa WC, Ju R, Liu Y, Li X (2017) Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci USA 114:10737–10742

    Article  CAS  Google Scholar 

  10. Johnston SH, Rauskolb C, Wilson R, Prabhakaran B, Irvine KD, Vogt TF (1997) A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124:2245–2254

    CAS  PubMed  Google Scholar 

  11. Kadur Lakshminarasimha Murthy P, Srinivasan T, Bochter MS, Xi R, Varanko AK, Tung KL, Semerci F, Xu K, Maletic-Savatic M, Cole SE, Shen X (2018) Radical and lunatic fringes modulate notch ligands to support mammalian intestinal homeostasis. Elife 7:e35710

    Article  Google Scholar 

  12. Kakuda S, Haltiwanger RS (2017) Deciphering the Fringe-mediated Notch code: identification of activating and inhibiting sites allowing discrimination between ligands. Dev Cell 40:193–201

    Article  CAS  Google Scholar 

  13. Kaushik DK, Hahn JN, Yong VW (2015) EMMPRIN, an upstream regulator of MMPs, in CNS biology. Matrix Biol 44-46:138–146

    Article  CAS  Google Scholar 

  14. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Cheneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018) JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46:D260–d266

    Article  CAS  Google Scholar 

  15. Lamaze C, Tardif N, Dewulf M, Vassilopoulos S, Blouin CM (2017) The caveolae dress code: structure and signaling. Curr Opin Cell Biol 47:117–125

    Article  CAS  Google Scholar 

  16. Lee SH, Lee YJ, Park SW, Kim HS, Han HJ (2011) Caveolin-1 and integrin beta1 regulate embryonic stem cell proliferation via p38 MAPK and FAK in high glucose. J Cell Physiol 226:1850–1859

    Article  CAS  Google Scholar 

  17. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  Google Scholar 

  18. Luo Y, Nita-Lazar A, Haltiwanger RS (2006) Two distinct pathways for O-fucosylation of epidermal growth factor-like or thrombospondin type 1 repeats. J Biol Chem 281:9385–9392

    Article  CAS  Google Scholar 

  19. Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2015) Caveolae and signalling in cancer. Nat Rev Cancer 15:225–237

    Article  CAS  Google Scholar 

  20. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112

    Article  CAS  Google Scholar 

  21. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15:540–555

    Article  CAS  Google Scholar 

  22. Ryu BK, Lee MG, Kim NH, Lee KY, Oh SJ, Moon JR, Kim HJ, Chi SG (2017) Bidirectional alteration of Cav-1 expression is associated with mitogenic conversion of its function in gastric tumor progression. BMC Cancer 17:766

    Article  Google Scholar 

  23. Simo R, Barbosa-Desongles A, Hernandez C, Selva DM (2012) IL1beta down-regulation of sex hormone-binding globulin production by decreasing HNF-4alpha via MEK-1/2 and JNK MAPK pathways. Mol Endocrinol 26:1917–1927

    Article  CAS  Google Scholar 

  24. Song B, Tang JW, Wang B, Cui XN, Zhou CH, Hou L (2005) Screening for lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines Hca-F and Hca-P using gene chip (in Chinese). Ai Zheng 24:774–780

  25. Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP (2012) Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 7:423–467

    Article  CAS  Google Scholar 

  26. Wang DX, Pan YQ, Liu B, Dai L (2018) Cav-1 promotes atherosclerosis by activating JNK-associated signaling. Biochem Biophys Res Commun 503:513–520

    Article  CAS  Google Scholar 

  27. Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G (2005) Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 16:927–942

    Article  CAS  Google Scholar 

  28. Yin H, Liu T, Zhang Y, Yang B (2016) Caveolin proteins: a molecular insight into disease. Front Med 10:397–404

    Article  Google Scholar 

  29. Yu S, Fan J, Liu L, Zhang L, Wang S, Zhang J (2013) Caveolin-1 up-regulates integrin alpha2,6-sialylation to promote integrin alpha5beta1-dependent hepatocarcinoma cell adhesion. FEBS Lett 587:782–787

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubo Liu or Jianing Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wu, Q., Huang, H. et al. Caveolin-1 promotes Rfng expression via Erk-Jnk-p38 signaling pathway in mouse hepatocarcinoma cells. J Physiol Biochem 75, 549–559 (2019). https://doi.org/10.1007/s13105-019-00703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00703-6

Keywords

Navigation