Skip to main content
Log in

Changes in the activity of some metabolic enzymes in the heart of SHR rat incurred by transgenic expression of CD36

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Hypertension, dyslipidemia, and insulin resistance in the spontaneously hypertensive rat (SHR) can be alleviated by rescuing CD36 fatty acid translocase. The present study investigated whether transgenic rescue of CD36 in SHR could affect mitochondrial function and activity of selected metabolic enzymes in the heart. These analyses were conducted on ventricular preparations derived from SHR and from transgenic strain SHR-Cd36 that expresses a functional wild-type CD36. Our respirometric measurements revealed that mitochondria isolated from the left ventricles exhibited two times higher respiratory activity than those isolated from the right ventricles. Whereas, we did not observe any significant changes in functioning of the mitochondrial respiratory system between both rat strains, enzyme activities of total hexokinase, and both mitochondrial and total malate dehydrogenase were markedly decreased in the left ventricles of transgenic rats, compared to SHR. We also detected downregulated expression of the succinate dehydrogenase subunit SdhB (complex II) and 70 kDa peroxisomal membrane protein in the left ventricles of SHR-Cd36. These data indicate that CD36 may affect in a unique fashion metabolic substrate flexibility of the left and right ventricles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abumrad NA, Goldberg IJ (2016) CD36 actions in the heart: lipids, calcium, inflammation, repair and more? Biochim Biophys Acta 1861:1442–1449. https://doi.org/10.1016/j.bbalip.2016.03.015

    Article  PubMed  CAS  Google Scholar 

  2. Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, Lezin ES, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J (1999) Identification of Cd36 (fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21:76–83. https://doi.org/10.1038/5013

    Article  PubMed  CAS  Google Scholar 

  3. Atlante A, Seccia TM, De Bari L, Marra E, Passarella S (2006) Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro. Int J Mol Med 18:177–186

    PubMed  CAS  Google Scholar 

  4. Atlante A, Seccia TM, Pierro P, Vulpis V, Marra E, Pirrelli A, Passarella S (1998) ATP synthesis and export in heart left ventricle mitochondria from spontaneously hypertensive rat. Int J Mol Med 1:709–716

    PubMed  CAS  Google Scholar 

  5. Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M (2017) Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14:238–250. https://doi.org/10.1038/nrcardio.2016.203

    Article  PubMed  CAS  Google Scholar 

  6. Campbell SE, Tandon NN, Woldegiorgis G, Luiken JJFP, Glatz JFC, Bonen A (2004) A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria. J Biol Chem 279:36235–36241. https://doi.org/10.1074/jbc.M400566200

    Article  PubMed  CAS  Google Scholar 

  7. Colasante C, Chen J, Ahlemeyer B, Baumgart-Vogt E (2015) Peroxisomes in cardiomyocytes and the peroxisome/peroxisome proliferator-activated receptor-loop. Thromb Haemost 113:452–463. https://doi.org/10.1160/TH14-06-0497

    Article  PubMed  Google Scholar 

  8. Drastichova Z, Skrabalova J, Jedelsky P, Neckar J, Kolar F, Novotny J (2012) Global changes in the rat heart proteome induced by prolonged morphine treatment and withdrawal. PLoS One 7:e47167. https://doi.org/10.1371/journal.pone.0047167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Drover VA, Abumrad NA (2005) CD36-dependent fatty acid uptake regulates expression of peroxisome proliferator activated receptors. Biochem Soc Trans 33:311–315. https://doi.org/10.1042/BST0330311

    Article  PubMed  CAS  Google Scholar 

  10. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, Vargiu P, Simongini I, Laragh JH (1992) Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 19:1550–1558. https://doi.org/10.1016/0735-1097(92)90617-V

    Article  PubMed  CAS  Google Scholar 

  11. Glatz JFC, Luiken JJFP (2017) From fat to FAT (CD36/SR-B2): understanding the regulation of cellular fatty acid uptake. Biochimie 136:21–26. https://doi.org/10.1016/j.biochi.2016.12.007

    Article  PubMed  CAS  Google Scholar 

  12. Gnaiger E, Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Steurer W, Margreiter R (2000) Mitochondria in the cold. In: Life in the cold. Springer, Berlin, pp 431–442

    Chapter  Google Scholar 

  13. Grundmanová M, Jarkovská D, Süß A, Tůma Z, Marková M, Grundman Z, El-Kadi A, Čedíková M, Štengl M, Kuncová J (2016) Propofol-induced mitochondrial and contractile dysfunction of the rat ventricular myocardium. Physiol Res 65:S601–S609

    PubMed  Google Scholar 

  14. Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT (2008) Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28:718–731. https://doi.org/10.1128/MCB.01338-07

    Article  PubMed  CAS  Google Scholar 

  15. Hajri T, Han XX, Bonen A, Abumrad NA (2002) Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 109:1381–1389. https://doi.org/10.1172/JCI14596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hanse EA, Ruan C, Kachman M, Wang D, Lowman XH, Kelekar A (2017) Cytosolic malate dehydrogenase activity helps support glycolysis in actively proliferating cells and cancer. Oncogene 36:3915–3924. https://doi.org/10.1038/onc.2017.36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hirano K, Kuwasako T, Nakagawa-Toyama Y, Janabi M, Yamashita S, Matsuzawa Y (2003) Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc Med 13:136–141

    Article  PubMed  CAS  Google Scholar 

  18. Imanaka T, Aihara K, Takano T, Yamashita A, Sato R, Suzuki Y, Yokota S, Osumi T (1999) Characterization of the 70-kDa peroxisomal membrane protein, an ATP binding cassette transporter. J Biol Chem 274:11968–11976

    Article  PubMed  CAS  Google Scholar 

  19. Jin X, Xia L, Wang L-S, Shi J-Z, Zheng Y, Chen W-L, Zhang L, Liu Z-G, Chen G-Q, Fang N-Y (2006) Differential protein expression in hypertrophic heart with and without hypertension in spontaneously hypertensive rats. Proteomics 6:1948–1956. https://doi.org/10.1002/pmic.200500337

    Article  PubMed  Google Scholar 

  20. Jüllig M, Hickey AJR, Chai CC, Skea GL, Middleditch MJ, Costa S, Choong SY, Philips ARJ, Cooper GJS (2008) Is the failing heart out of fuel or a worn engine running rich? A study of mitochondria in old spontaneously hypertensive rats. Proteomics 8:2556–2572. https://doi.org/10.1002/pmic.200700977

    Article  PubMed  CAS  Google Scholar 

  21. King KL, Stanley WC, Rosca M, Kerner J, Hoppel CL, Febbraio M (2007) Fatty acid oxidation in cardiac and skeletal muscle mitochondria is unaffected by deletion of CD36. Arch Biochem Biophys 467:234–238. https://doi.org/10.1016/j.abb.2007.08.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Klevstig M, Manakov D, Kasparova D, Brabcova I, Papousek F, Zurmanova J, Zidek V, Silhavy J, Neckar J, Pravenec M, Kolar F, Novakova O, Novotny J (2013) Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats. Pflügers Arch Eur J Physiol 465:1477–1486. https://doi.org/10.1007/s00424-013-1281-5

    Article  CAS  Google Scholar 

  23. Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H (2015) Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 130:211–220. https://doi.org/10.1159/000369782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Labarthe F, Khairallah M, Bouchard B, Stanley WC, Rosiers CD (2005) Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid. Am J Physiol Heart Circ Physiol 288:H1425–H1436. https://doi.org/10.1152/ajpheart.00722.2004

    Article  PubMed  CAS  Google Scholar 

  25. LaPier TLK, Rodnick KJ (2000) Changes in cardiac energy metabolism during early development of female SHR. Am J Hypertens 13:1074–1081. https://doi.org/10.1016/S0895-7061(00)00297-1

    Article  PubMed  CAS  Google Scholar 

  26. Lee W-S, Kim J (2015) Peroxisome proliferator-activated receptors and the heart: lessons from the past and future directions. PPAR Res 2015:271983–271918. https://doi.org/10.1155/2015/271983

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lehman JJ, Kelly DP (2002) Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 29:339–345

    Article  PubMed  CAS  Google Scholar 

  28. Longnus SL, Wambolt RB, Barr RL, Lopaschuk GD, Allard MF (2001) Regulation of myocardial fatty acid oxidation by substrate supply. Am J Physiol Heart Circ Physiol 281:H1561–H1567

    Article  PubMed  CAS  Google Scholar 

  29. Lopaschuk GD, Jaswal JS (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56:130–140. https://doi.org/10.1097/FJC.0b013e3181e74a14

    Article  PubMed  CAS  Google Scholar 

  30. Manakov D, Ujcikova H, Pravenec M, Novotny J (2016) Alterations in the cardiac proteome of the spontaneously hypertensive rat induced by transgenic expression of CD36. J Proteome 145:177–186. https://doi.org/10.1016/j.jprot.2016.04.041

    Article  CAS  Google Scholar 

  31. Meng C, Jin X, Xia L, Shen S-M, Wang X-L, Cai J, Chen G-Q, Wang L-S, Fang N-Y (2009) Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J Proteome Res 8:2463–2475. https://doi.org/10.1021/pr801059u

    Article  PubMed  CAS  Google Scholar 

  32. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J (2016) Global disparities of hypertension prevalence and control. Circulation 134:441–450. https://doi.org/10.1161/CIRCULATIONAHA.115.018912

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miyaoka K, Kuwasako T, Hirano K, Nozaki S, Yamashita S, Matsuzawa Y (2001) CD36 deficiency associated with insulin resistance. Lancet 357:686–687. https://doi.org/10.1016/S0140-6736(00)04138-6

    Article  PubMed  CAS  Google Scholar 

  34. Neckář J, Šilhavy J, Zídek V, Landa V, Mlejnek P, Šimáková M, Seidman JG, Seidman C, Kazdová L, Klevstig M, Novák F, Vecka M, Papoušek F, Houštěk J, Drahota Z, Kurtz TW, Kolář F, Pravenec M (2012) CD36 overexpression predisposes to arrhythmias but reduces infarct size in spontaneously hypertensive rats: gene expression profile analysis. Physiol Genomics 44:173–182. https://doi.org/10.1152/physiolgenomics.00083.2011

    Article  PubMed  CAS  Google Scholar 

  35. Nielsen TT, Støttrup NB, Løfgren B, Bøtker HE (2011) Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle. Cardiovasc Res 91:382–391. https://doi.org/10.1093/cvr/cvr051

    Article  PubMed  CAS  Google Scholar 

  36. Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    Article  PubMed  CAS  Google Scholar 

  37. Paternostro G, Clarke K, Heath J, Seymour AM, Radda GK (1995) Decreased GLUT-4 mRNA content and insulin-sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc Res 30:205–211

    Article  PubMed  CAS  Google Scholar 

  38. Prabhudas M, Bowdish D, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, Means TK, Moestrup SK, Post S, Sawamura T, Silverstein S, Wang X-Y, El Khoury J (2014) Standardizing scavenger receptor nomenclature. J Immunol 192:1997–2006. https://doi.org/10.4049/jimmunol.1490003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pravenec M, Churchill PC, Churchill MC, Viklicky O, Kazdova L, Aitman TJ, Petretto E, Hubner N, Wallace CA, Zimdahl H, Zidek V, Landa V, Dunbar J, Bidani A, Griffin K, Qi N, Maxova M, Kren V, Mlejnek P, Wang J, Kurtz TW (2008) Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet 40:952–954. https://doi.org/10.1038/ng.164

    Article  PubMed  CAS  Google Scholar 

  40. Pravenec M, Landa V, Zídek V, Musilová A, Kazdová L, Qi N, Wang J, St Lezin E, Kurtz TW (2003) Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension. Physiol Res 52:681–688

    PubMed  CAS  Google Scholar 

  41. Pravenec M, Landa V, Zidek V, Musilova A, Kren V, Kazdova L, Aitman TJ, Glazier AM, Ibrahimi A, Abumrad NA, Qi N, Wang JM, St Lezin EM, Kurtz TW (2001) Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet 27:156–158. https://doi.org/10.1038/84777

    Article  PubMed  CAS  Google Scholar 

  42. Raizada V, Pathak D, Avery G, Woodfin B (1993) Accelerated glycolysis in early hypertensive left ventricular hypertrophy. Cardiology 83:160–164

    Article  PubMed  CAS  Google Scholar 

  43. Redout EM, Wagner MJ, Zuidwijk MJ, Boer C, Musters RJP, van Hardeveld C, Paulus WJ, Simonides WS (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75:770–781. https://doi.org/10.1016/j.cardiores.2007.05.012

    Article  PubMed  CAS  Google Scholar 

  44. Saifudeen I, Subhadra L, Konnottil R, Nair RR (2017) Metabolic modulation by medium-chain triglycerides reduces oxidative stress and ameliorates CD36-mediated cardiac remodeling in spontaneously hypertensive rat in the initial and established stages of hypertrophy. J Card Fail 23:240–251. https://doi.org/10.1016/j.cardfail.2016.08.001

    Article  PubMed  CAS  Google Scholar 

  45. Santamaria MH, Chen AY, Chow J, Muñoz DC, Schmid-Schönbein GW (2014) Cleavage and reduced CD36 ectodomain density on heart and spleen macrophages in the spontaneously hypertensive rat. Microvasc Res 95:131–142. https://doi.org/10.1016/j.mvr.2014.08.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  PubMed  CAS  Google Scholar 

  47. de Simone G, Palmieri V, Bella JN, Celentano A, Hong Y, Oberman A, Kitzman DW, Hopkins PN, Arnett DK, Devereux RB (2002) Association of left ventricular hypertrophy with metabolic risk factors: the HyperGEN study. J Hypertens 20:323–331

    Article  PubMed  Google Scholar 

  48. Srere PA (1969) [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. In: Lowenstein JM (ed) Methods in Enzymology, vol 13. Academic Press, New York, pp 3–11

  49. Tadic M, Pieske-Kraigher E, Cuspidi C, Morris DA, Burkhardt F, Baudisch A, Haßfeld S, Tschöpe C, Pieske B (2017) Right ventricular strain in heart failure: clinical perspective. Arch Cardiovasc Dis 110:562–571. https://doi.org/10.1016/j.acvd.2017.05.002

    Article  PubMed  Google Scholar 

  50. Tang Y, Mi C, Liu J, Gao F, Long J (2014) Compromised mitochondrial remodeling in compensatory hypertrophied myocardium of spontaneously hypertensive rat. Cardiovasc Pathol 23:101–106. https://doi.org/10.1016/j.carpath.2013.11.002

    Article  PubMed  CAS  Google Scholar 

  51. Ventura-Clapier R, Garnier A, Veksler V, Joubert F (2011) Bioenergetics of the failing heart. Biochim Biophys Acta 1813:1360–1372. https://doi.org/10.1016/j.bbamcr.2010.09.006

    Article  PubMed  CAS  Google Scholar 

  52. Vincent G, Khairallah M, Bouchard B, Des Rosiers C (2003) Metabolic phenotyping of the diseased rat heart using 13C-substrates and ex vivo perfusion in the working mode. Mol Cell Biochem 242:89–99

    Article  PubMed  CAS  Google Scholar 

  53. Waskova-Arnostova P, Kasparova D, Elsnicova B, Novotny J, Neckar J, Kolar F, Zurmanova J (2014) Chronic hypoxia enhances expression and activity of mitochondrial creatine kinase and hexokinase in the rat ventricular myocardium. Cell Physiol Biochem 33:310–320. https://doi.org/10.1159/000356671

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the GAUK grant no. 1016214 from the Charles University Grant Agency, and by the institutional research projects no. 67985823 (Institute of Physiology, CAS) and SVV-260434/2018 (Charles University in Prague). MP was supported by grant 14-36804 from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Novotny.

Ethics declarations

Animal experiments were performed in accordance with the Animal Protection Welfare Law of the Czech Republic (311/1997) and were approved by the Ethics Committee of the Institute of Physiology of the Academy of Sciences of the Czech Republic.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manakov, D., Kolar, D., Zurmanova, J. et al. Changes in the activity of some metabolic enzymes in the heart of SHR rat incurred by transgenic expression of CD36. J Physiol Biochem 74, 479–489 (2018). https://doi.org/10.1007/s13105-018-0641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0641-1

Keywords

Navigation