Journal of Physiology and Biochemistry

, Volume 74, Issue 1, pp 69–83 | Cite as

Food additives, contaminants and other minor components: effects on human gut microbiota—a review

  • Paula Roca-Saavedra
  • Veronica Mendez-Vilabrille
  • Jose Manuel Miranda
  • Carolina Nebot
  • Alejandra Cardelle-Cobas
  • Carlos M. Franco
  • Alberto Cepeda
Review Article


Gut bacteria play an important role in several metabolic processes and human diseases, such as obesity and accompanying co-morbidities, such as fatty liver disease, insulin resistance/diabetes, and cardiovascular events. Among other factors, dietary patterns, probiotics, prebiotics, synbiotics, antibiotics, and non-dietary factors, such as stress, age, exercise, and climatic conditions, can dramatically impact the human gut microbiota equilibrium and diversity. However, the effect of minor food constituents, including food additives and trace contaminants, on human gut microbiota has received less attention. Consequently, the present review aimed to provide an objective perspective of the current knowledge regarding the impacts of minor food constituents on human gut microbiota and consequently, on human health.


Antibiotics Bacteroidetes Dietary emulsifier Firmicutes Food additive Gut microbiota Non-nutritive sweetener Proteobacteria 



The authors want to thank the European Regional Development Funds (FEDER), grant GRC 2014/004 for covering the costs.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abdou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS (2008) Splenda alters gut microflora and increases intestinal p-glycoprotein and cytohrome p-450 in male rats. J Toxicol Env Heal A 21:1415–1429CrossRefGoogle Scholar
  2. 2.
    Abdou RM, Zhu L, Baker RD, Baker SS (2016) Gut microbiota of nonalcoholic fatty liver disease. Dig Dis Sci 61:1268–1281PubMedCrossRefGoogle Scholar
  3. 3.
    Ajslev TA, Andersen CS, Gamborg M, Sorensen TIA, Jess T (2011) Childhood overweight after establishments of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes 35:522–529CrossRefGoogle Scholar
  4. 4.
    Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML et al (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Arboleya S, Sanchez B, Milani C, Duranti S, Solis G et al (2015) Intestinal microbiota development in preterm neonates and effects of perinatal antibiotics. J Pediatr 166:538–544PubMedCrossRefGoogle Scholar
  6. 6.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Balamurugan R, Mary RR, Chittaranjan S, Jancy H, Shobana Devi R et al (2010) Low levels of lactobacilli in women with iron-deficiency anaemia in south India. Br J Nutr 104:931–934PubMedCrossRefGoogle Scholar
  8. 8.
    Baynes RE, Dedonder K, Kissell L, Mzyk D, Marmulak T et al (2016) Health concerns and management of select veterinary drug residues. Food Chem Toxicol 88:112–122PubMedCrossRefGoogle Scholar
  9. 9.
    Biesalski HK (2016) Nutrition meets the microbiome: micronutrients and the microbiota. Ann New York Acad Sci 1372:53–64CrossRefGoogle Scholar
  10. 10.
    Borukas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 91:1–62CrossRefGoogle Scholar
  11. 11.
    Brown CC, Noelle RJ (2015) Seeing through the dark: new insights into the immune regulatory functions of vitamin A. Eur J Immunol 45:1287–1295PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Brown JM, Hanzen SL (2015) The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev. Med 66:343–359PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Brugman S, Klatter FA, Visser JT, Wildeboer-Veloo AC, Harmsen HJ et al (2006) Antibiotic treatment partially protects against type 1 diabetes in the bio-breeding diabetes-prone rat: is the gut flora involved in the development of type 1 diabetes? Diabetologia 49:2105–2108PubMedCrossRefGoogle Scholar
  14. 14.
    Caesar R, Reigstad CS, Bäckhed HK, Reinhardt C, Ketonen M et al (2012) Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61:1701–1707PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Canesso MCC, Lacerda NL, Ferreira CM, Gonçalves JL, Almeida D et al (2014) Comparing the effects of acute alcohol consumption in germ-free and conventional mice: the role of the gut microbiota. BMC Microbiol 14:240–249CrossRefGoogle Scholar
  16. 16.
    Cani P, Everard A (2016) Talking microbes: when gut bacteria interact with diet and host organs. Mol Nutr Food Res 60:58–66PubMedCrossRefGoogle Scholar
  17. 17.
    Chaplin A, Parra P, Serra F, Palou A (2015) Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS One 10:e125091Google Scholar
  18. 18.
    Chassaing B, Gewirtz AT (2016) Has provoking microbiota aggression driven the obesity epidemic? Bioassays 38:122–128CrossRefGoogle Scholar
  19. 19.
    Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S et al (2015) Dietary emulsifiers impact the mouse guy microbiota promoting colitis and metabolic syndrome. Nature 519:92–96PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT et al (2013) Exercise attenuates PCB-induced changes in mouse gut microbiome. Environ Health Perspect 121:725–730PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cho I, Yamanishi S, Cox L, Methé BA, Zavadi J et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Choy YY, Quifer-Rada P, Holstege DM, Frese SA, Calvert CC et al (2014) Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocynidins. Food Funct 5:2298–2308PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Claesson MJ, Cusack S, O Sullivan O, Greene-Diniz R, de Weerd H et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108:4586–4591PubMedCrossRefGoogle Scholar
  24. 24.
    Claus SP, Ellero SL, Berger B, Krause L, Bruttin A et al (2011) Colonization-induced host-gut microbial metabolic interaction. Mbio 2:e00271–e00210PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Claus SP, Guillou H, Ellero-Simatos S (2016) The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2:16,003CrossRefGoogle Scholar
  26. 26.
    Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z et al (2015) The microbiome of uncontacted Amerindians. Sci Adv 1:e1500183PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Clemente JC, Ursell LK, Wegener Parfrey L, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Conlon MA, Bird AR (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44CrossRefGoogle Scholar
  29. 29.
    Cowan TE, Palmnas M, Reiner R, Ardell K, Yang JJ et al (2013) Artificial sweetener consumption differentially affects the gut microbiota-host metabolic interactions. FASEB J 27:224–227Google Scholar
  30. 30.
    Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM et al (2014) Altering the intestinal microbiota during a critical development window has lasting metabolic consequences. Cell 158:705–721PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cresci GA, Bawden E (2016) Gut microbiome: what we do and don’t know. Nutr Clin Pract 30:734–746CrossRefGoogle Scholar
  32. 32.
    Daly K, Darby AC, Hall N, Nau A, Bravo D et al (2014) Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br J Nutrit 111:S30–S35CrossRefGoogle Scholar
  33. 33.
    De Filippo C, Cavalieri D, Di Paola M, Ramozzotti M, Poullet JB et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14,691–14,696CrossRefGoogle Scholar
  34. 34.
    Dethlefsen L, Relman DA (2011) Imcomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108:4554–4561PubMedCrossRefGoogle Scholar
  35. 35.
    Devroka S, Wang Y, Much MW, Leone V, Fehlner-Peach H et al (2012) Dietary-fat-induced taurocholic promotes pathobiont expansion and colitis in II10-/- mice. Nature 487:104–108CrossRefGoogle Scholar
  36. 36.
    Endo A, Pärtty A, Kalliomäki M, Isolauri E, Salminen S (2014) Long-term monitoring of the human intestinal microbiota from the 2nd week to 13 years of age. Anaerobe 28:149–156PubMedCrossRefGoogle Scholar
  37. 37.
    Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP et al (2015) Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem 26:651–660PubMedCrossRefGoogle Scholar
  38. 38.
    Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP et al (2015) Shifts in microbiota species and fermentation products in a dietary model enriched in fat and sucrose. Benef Microbes 6:97–111PubMedCrossRefGoogle Scholar
  39. 39.
    Etxeberria U, Arias N, Boqué N, Romo-Hualde A, Macarulla MT et al (2015) Metabolic faecal fingerprinting of trans-resveratrol and quercetin following a high-fat sucrose dietary model using liquid chromatography coupled to high-resolution mass spectrometry. Food Funct 6:2758–2767PubMedCrossRefGoogle Scholar
  40. 40.
    Etxeberria U, Castilla-Madrigal R, Lostao MP, Martinez JA, Milagro FI (2015) Trans-resveratrol induces a potential anti-lipogenic effect in lipopolysaccharide-stimulated enterocytes. Cell Mol Biol 61:9–16PubMedGoogle Scholar
  41. 41.
    Etxeberria U, Hijona E, Aguirre L, Milagro FI, Bujanda L et al (2017) Pterostilbene-induced changes in gut microbiota composition in relation to obesity. Mol Nutr Food Res 61. doi: 10.1002/mnfr.201500906
  42. 42.
    Etxeberria U, Fernandez-Quintela A, Milagro FI, Aguirre L, Martinez JA et al (2013) Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 61:9517–1933PubMedCrossRefGoogle Scholar
  43. 43.
    Foreyt R, Kleinman R, Brown RJ, Lindstrom R (2012) The use of low-calorie sweeteners by children: implications for weight management. J Nutr 142:S1155–S1162CrossRefGoogle Scholar
  44. 44.
    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatellier E et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Foster JA, Neufeld KAM (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312PubMedCrossRefGoogle Scholar
  46. 46.
    Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gibson MK, Crofts TS, Dantas G (2015) Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol 27:51–56PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH et al (2014) Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr 165:23–29PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gupta S, Allen-Vercoe E, Petrof E (2016) Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol 9:229–239PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S et al (2012) Metabolism of anthocyanins by human gut microbiota and their influence on gut bacterial growth. J Agric Food Chem 60:3882–3890PubMedCrossRefGoogle Scholar
  51. 51.
    Hollister E, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146:1449–1458PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hu Y, Yang X, Qin J, Lu N, Cheng G et al (2013) Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4:2151PubMedGoogle Scholar
  54. 54.
    Huang J, Chen L, Xue B, Liu Q, Ou S et al (2016) Different flavonoids can shape unique but microbiota profile in vitro. J Food Sci 81:H2273–H2279PubMedCrossRefGoogle Scholar
  55. 55.
    Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  56. 56.
    Humphreys KJ, Conlon MA, Young GP, Topping DL, Hu Y et al (2014) Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res 7:786–795CrossRefGoogle Scholar
  57. 57.
    Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 7:e34242PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jakobson HE, Jerberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK et al (2010) Short-term antibiotic treatment has differing long-terms impacts on the human throat and gut microbiome. PLOS One 5:e9836CrossRefGoogle Scholar
  59. 59.
    Jeffery IB, Lynch DB, O Tolle PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10:170–182PubMedCrossRefGoogle Scholar
  60. 60.
    Jia W, Zheng X, Zhao A, Xie G, Chi Y et al (2013) Melamine-induced renal toxicity is mediated by the gut microbiota. Sci Transl Med 13:172ra22Google Scholar
  61. 61.
    Johns DJ, Hartmann-Boyce J, Jebb SA, Aveyard P (2014) Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J Acad Nutr Diet 114:1557–1568PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Joly C, Gay-Quéheillard J, Léké A, Chardon K, Delanaud S et al (2013) Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the simulator of the human intestinal microbial ecosystem (SHIME®) and in the rat. Environ Sci Pollut Res 20:2726–2734CrossRefGoogle Scholar
  63. 63.
    Jones ML, Ganopolsky JG, Martoni CJ, Labbé A, Prakash S (2014) Emerging science of the human microbiome. Gut Microb 5:446–457CrossRefGoogle Scholar
  64. 64.
    Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 49:99–103CrossRefGoogle Scholar
  65. 65.
    Koenig JE, Spor A, Scalfone N, Fricker AD, Stobaugh J et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108:4578–4585PubMedCrossRefGoogle Scholar
  66. 66.
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Laniro G, Tilg H, Gasbarrini A (2016) Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65:1906–1915CrossRefGoogle Scholar
  68. 68.
    Le Chatellier E, Nielsen T, Qin J, Prifti E, Hildebrand F et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefGoogle Scholar
  69. 69.
    Lee CY (2013) Challenges in providing credible scientific evidence of health benefits of dietary polyphenols. J Funct Foods 5:524–526CrossRefGoogle Scholar
  70. 70.
    Leung C, Rivera L, Furness JB, Angus PW (2016) The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 13:412–425PubMedCrossRefGoogle Scholar
  71. 71.
    Li H, Jia W (2012) Cometabolism of microbes and host: implications for drug metabolism and drug-induced toxicity. Clin Pharmacol Ther 94:574–581CrossRefGoogle Scholar
  72. 72.
    Li Z, Henning SM, Lee RP, Lu QY, Summanen PH et al (2015) Pomegranate extract induces metabolite formation and changes stool microbiota in healthy volunteers. Food Funct 6:1487–1495Google Scholar
  73. 73.
    Lin J (2011) Effect of antibiotic growth promoters on intestinal microbiota in food animals: a novel model for studying the relationship between gut microbiota and human obesity? Front Microbiol 2:1–3Google Scholar
  74. 74.
    Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672PubMedCrossRefGoogle Scholar
  75. 75.
    Manichahn C, Reeder J, Gibert P, Varela E, Llopis M et al (2010) Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res 20:1411–1419CrossRefGoogle Scholar
  76. 76.
    Martinez JA, Etxeberria U, Galar A, Milagro FI (2013) Role of polyphenols and inflammatory processes on disease progression mediated by the gut microbiota. Rejuvenation Res 16:435–437PubMedCrossRefGoogle Scholar
  77. 77.
    Martin FPJ, Montoliu I, Nagy K, Moco S, Collino S et al (2012) Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J Proteome Res 11:6252–6263PubMedCrossRefGoogle Scholar
  78. 78.
    Mikkelsen KH, Frost M, Bahl MI, Licht TR, Jensen US et al (2015) Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS One 10:e0142352PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mikkelsen KH, Knop FK, Frost M, Hallas J, Pottegard A (2015) Use of antibiotics and risk of type 2 diabetes: a population-based case-control study. J Clin Endocrinol Metab 100:3633–3640PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Murphy EF, Clarke SF, Marques TM, Hill C, Stanton C et al (2013) Strategies for targeting obesity and metabolic health? Gut Microb 4:48–51CrossRefGoogle Scholar
  81. 81.
    Murphy R, Stewart AW, Braithwaite I, Beasley R, Hancox RJ et al (2014) Antibiotic treatment during infancy and increased body mess index in boys: an international cross-sectional study. Int J Obes 38:1115–1119CrossRefGoogle Scholar
  82. 82.
    Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S et al (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6:4786CrossRefGoogle Scholar
  83. 83.
    Norris GH, Jiang C, Ryan J, Porter CM, Blesso CN (2016) Milk sphingomyelin improves lipid metabolism and alters gut in high fat diet-fed mice. J Nutr Biochem 30:93–101PubMedCrossRefGoogle Scholar
  84. 84.
    Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F et al (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J et al (2014) Immunoglobulin A coating indentifies colitogenic bacteria in inflammatory dowel diseases. Cell 158:1000–1010PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Palmnäs MS, Cowan TE, Bomhof MR, Su J, Reimer RA et al (2014) Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rats. PLoS One 9:e109841PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Panda S, El Khader I, Casellas F, Lopez Vivancos J, García Cors M et al (2014) Short-term effect of antibiotics on human gut microbiota. PLoS One 9:e95476PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Penders J, Stobberingh EE, Savelkoul PHM, Wolffs PFG (2013) The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 4:87PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Pepino MY (2015) Metabolic effects of non-nutritive sweeteners. Physiol Behav 152:450–455PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Perez-Chanona E, Trinchieri G (2016) The role of microbiota in cancer therapy. Curr Opin Immunol 39:75–81PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Perez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A et al (2013) Gut microbioma disturbance during antibiotic therapy: a multi-omic approach. Gut 62:1591–1601PubMedCrossRefGoogle Scholar
  92. 92.
    Pinyayev TS, Kohan MJ, Herbin-David K, Creed JT, Thomas DJ (2011) Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. Chem Res Toxicol 24:475–477PubMedCrossRefGoogle Scholar
  93. 93.
    Power SE, O Toole PW, Stanton C, Ross RP, Fitzgerald GF (2014) Intestinal microbiota, diet and health. Br J Nutr 111:387–402PubMedCrossRefGoogle Scholar
  94. 94.
    Qiao Y, Sun J, Xia S, Tang X, Shi Y et al (2014) Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct 5:1241–1249PubMedCrossRefGoogle Scholar
  95. 95.
    Quin N, Yang F, Prifti E, Chen Y, Sha L et al (2014) Alterations of the human gut microbiome in liver cirrosis. Nature 513:59–64CrossRefGoogle Scholar
  96. 96.
    Reed SH, Neuman S, Moscovich S, Glahn RP, Koren O et al (2015) Chronic zinc deficiency alters chik gut microbiota composition and function. Nutrients 7:9768–9784PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Rettig S, Tenewitz J, Ahearn G, Coughlin C (2014) Sucralose causes a concentration dependent metabolic inhibition of the gut flora Bacteroides, B. fragilis and B. uniformis not observed in the Firmicutes, E. faecalis and C. sordellii. FASEB J 28:1111–1118Google Scholar
  98. 98.
    Riley LW, Raphael E, Faerstein E (2013) Obesity in the United States—dysbiosis from exposure to low-dose antibiotics? Front Public Health 69:1–8Google Scholar
  99. 99.
    Roberts CL, Keita AV, Duncan SH, O Kennedy N, Söderholm JD et al (2010) Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 59:1331–1339PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Robinson CJ, Young VB (2010) Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microb 1:279–284CrossRefGoogle Scholar
  101. 101.
    Robles Alonso V, Guarner F (2013) Linking the gut microbiota to human health. Br J Nutr 109:S21–S26PubMedCrossRefGoogle Scholar
  102. 102.
    Russell SL, Gold MJ, Reynolds LA, Willing BP, Dimitriu P et al (2015) Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. J Allergy Clin Inmunol 135:100–109CrossRefGoogle Scholar
  103. 103.
    Saad R, Rizkallah MR, Aziz RK (2012) Gut pharmacomicrobiomics: the tip of an iceberg of complex, interactions between drugs and gut-associated microbes. Gut Pathog 4:16–28PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Schippa S, Conte MP (2014) Dysbiotic events in gut microbiota: impacts on human health. Nutrients 6:5786–5805PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Shang Q, Yin Y, Zhu L, Li G, Yu G et al (2016) Degradation of chondroitin sulfate by the gut microbiota of Chinese individuals. Int J Biol Macromol 86:112–118PubMedCrossRefGoogle Scholar
  106. 106.
    Shehata AA, Schrödl W, Aldin AA, Hafez HM, Krüger M (2013) The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol 66:350–358PubMedCrossRefGoogle Scholar
  107. 107.
    Singh V, Yeon BS, Vijay-Kumar M (2016) Gut microbiome as a novel cardiovascular therapeutic target. Curr Opin Pharmacol 27:8–12PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Starke IC, Pieper R, Neumann K, Zentek J, Vahjen W (2014) The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiol Ecol 87:416–427PubMedCrossRefGoogle Scholar
  109. 109.
    Subramanian S, Huq S, Yatsumenko T, Haque R, Mahfuz M et al (2014) Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510:417–421PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiis CA et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut micobiota. Nature 514:181–186PubMedCrossRefGoogle Scholar
  111. 111.
    Swithers SE, Martin AA, Clark KM, Laboy AF, Davidson TL (2010) Body weight gain in rats consuming sweetened liquids. Effects on caffeine and diet composition. Appetite 55:528–533PubMedGoogle Scholar
  112. 112.
    Tan H, O Toole PW (2015) Impact of diet on the human intestinal microbiota. Curr Opin Food Sci 2:71–77CrossRefGoogle Scholar
  113. 113.
    Thapa D, Louis P, Losa R, Zweifel B, Wallace RJ (2015) Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures. Microbiology 161:441–449PubMedCrossRefGoogle Scholar
  114. 114.
    Thomas RM, Jobin C (2015) The microbiome and cancer: is the “oncobiome” mirage real? Trends Cancer 1:24–35PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Thuny F, Richet H, Casalta JP, Angelakis E, Habib G et al (2010) Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One 5:e9074PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Touvier M, Druesne-Pecollo N, Kesse-Guyot E, Andreeva VA, Fezeu L et al (2013) Dual association between polyphenol intake and breast cancer risk according to alcohol consumption level: a prospective cohort study. Breast Cancer Res Treat 137:225–236PubMedCrossRefGoogle Scholar
  117. 117.
    Trasandre L, Blustein J, Liu M, Corwin E, Cox LM (2013) Infant antibiotic exposures and early-life body mass. Int J Obes 37:16–23CrossRefGoogle Scholar
  118. 118.
    Tuohy KM, Conterno L, Gasperotti M, Viola R (2012) Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem 60:8776–8782PubMedCrossRefGoogle Scholar
  119. 119.
    Tzounis X, Roriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C et al (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double blind, crossover interventional study. Am J Clin Nutr 93:62–72PubMedCrossRefGoogle Scholar
  120. 120.
    Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headley J et al (2005) Human colon microbiota transform polyciclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect 113:6–10PubMedCrossRefGoogle Scholar
  121. 121.
    Van Vleck PR, Lima S, Siler JD, Foditsch C, Wamick LD et al (2016) Ingestion of milk containing very low concentration of antimicrobials: longitudinal effects on fecal microbiota composition in preweaned calves. PloS One 11:e0147525CrossRefGoogle Scholar
  122. 122.
    Vermeiren J, Hindryckx P, van Nieuwenhuyse G, Laukens D, de Vos M et al (2012) Intrarectal nitric oxide administration prevents cellular infiltration but not colonic injury during dextran sodium sulfate colitis. Dig Dis Sci 57:1832–1837PubMedCrossRefGoogle Scholar
  123. 123.
    Vrieze A, Out C, Fuentes S, Jonker L, Reuling I et al (2014) Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60:824–831PubMedCrossRefGoogle Scholar
  124. 124.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS et al (2011) Glut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wu H, Tremaroli V, Bäckhed F (2015) Linking microbiota to human diseases: a systems biology perspective. Trends Endocrinol Metab 26:758–770PubMedCrossRefGoogle Scholar
  126. 126.
    Yap PSX, Lim SHE, Hu CP, Yiap BC (2013) Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 20:710–713PubMedCrossRefGoogle Scholar
  127. 127.
    Zackular JP, Rogers MAM, Ruffin MT IV, Schloss PD (2014) The human gut mirobiome as a screening tool for colorectal cancer. Cancer Prev Res 7:1112–1121CrossRefGoogle Scholar
  128. 128.
    Zhang L, Huang Y, Zhou Y, Buckley T, Wang HH (2013) Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob Agents Chemother 57:3659–3666PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Zhang L, Nichols RG, Correll J, Murray IA, Tanaka N et al (2015) Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect 123:679–688PubMedPubMedCentralGoogle Scholar

Copyright information

© University of Navarra 2017

Authors and Affiliations

  • Paula Roca-Saavedra
    • 1
  • Veronica Mendez-Vilabrille
    • 1
  • Jose Manuel Miranda
    • 1
  • Carolina Nebot
    • 1
  • Alejandra Cardelle-Cobas
    • 1
  • Carlos M. Franco
    • 1
  • Alberto Cepeda
    • 1
  1. 1.Laboratorio de Higiene Inspección y Control de Alimentos. Dpto. de Química Analítica, Nutrición y BromatologíaUniversidade de Santiago de CompostelaLugoSpain

Personalised recommendations