Skip to main content

Advertisement

Log in

Tumor necrosis factor-α-induced microvascular endothelial cell hyperpermeability: role of intrinsic apoptotic signaling

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-α (TNF-α), a pro-apoptotic cytokine, is involved in vascular hyperpermeability, tissue edema, and inflammation. We hypothesized that TNF-α induces microvascular hyperpermeability through the mitochondria-mediated intrinsic apoptotic signaling pathway. Rat lung microvascular endothelial cells grown on Transwell inserts, chamber slides, or dishes were treated with recombinant TNF-α (10 ng/ml) in the presence or absence of a caspase-3 inhibitor, Z-DEVD-FMK (100 μM). Fluorescein isothiocyanate (FITC)-albumin (5 mg/ml) was used as a marker of monolayer permeability. Mitochondrial reactive oxygen species (ROS) was determined using dihydrorhodamine 123 and mitochondrial transmembrane potential using JC-1. The adherens junction integrity and actin cytoskeletal organization were studied using β-catenin immunofluorescence and rhodamine phalloidin, respectively. Caspase-3 activity was measured fluorometrically. The pretreatment with Z-DEVD-FMK (100 μM) attenuated TNF-α-induced (10 ng/ml) disruption of the adherens junctions, actin stress fiber formation, increased caspase-3 activity, and monolayer hyperpermeability (p < 0.05). TNF-α (10 ng/ml) treatment resulted in increased mitochondrial ROS formation and decreased mitochondrial transmembrane potential. Intrinsic apoptotic signaling-mediated caspase-3 activation plays an important role in regulating TNF-α-induced endothelial cell hyperpermeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bubici C, Papa S, Dean K, Franzoso G (2006) Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25:6731–6748

    Article  CAS  PubMed  Google Scholar 

  2. Campbell MT, Dagher P, Hile KL, Zhang H, Meldrum DR, Rink RC, Meldrum KK (2008) Tumor necrosis factor-α induces intrinsic apoptotic signaling during renal obstruction through truncated Bid activation. J Urol 180:2694–2700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Childs EW, Tharakan B, Hunter FA, Isong M, Liggins ND (2008) Mitochondrial complex III is involved in proapoptotic BAK-induced microvascular endothelial cell hyperpermeability. Shock 29:636–641

    Article  CAS  PubMed  Google Scholar 

  4. Childs EW, Tharakan B, Hunter FA, Tinsley JH, Cao X (2007) Apoptotic signaling induces hyperpermeability following hemorrhagic shock. Am J Physiol Heart Circ Physiol 292:H3179–3189

  5. Childs EW, Udobi KF, Hunter FA, Dhevan V (2005) Evidence of transcellular albumin transport after hemorrhagic shock. Shock 23:565–570

    CAS  PubMed  Google Scholar 

  6. Childs EW, Udobi KF, Wood JG, Hunter FA, Smalley DM, Cheung LY (2002) In vivo visualization of reactive oxidants and leukocyte-endothelial adherence following hemorrhagic shock. Shock 18:423–427

    Article  PubMed  Google Scholar 

  7. Dada LA, Sznajder JI (2011) Mitochondrial Ca2+ and ROS take center stage to orchestrate TNF-α-mediated inflammatory responses. J Clin Invest 121:1683–1685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dewar D, Moore FA, Moore EE, Balogh Z (2009) Postinjury multiple organ failure. Injury 40:912–918

    Article  PubMed  Google Scholar 

  9. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  CAS  PubMed  Google Scholar 

  10. Galluzzi L, Blomgren K, Kroemer G (2009) Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10:481–494

    Article  CAS  PubMed  Google Scholar 

  11. Groeneveld AB (2002) Vascular pharmacology of acute lung injury and acute respiratory distress syndrome. Vasc Pharmacol 39:247–256

    Article  CAS  Google Scholar 

  12. Goldblum SE, Hennig B, Jay M, Yoneda K, McClain CJ (1989) Tumor necrosis factor alpha-induced pulmonary vascular endothelial injury. Infect Immun 57:1218–1226

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778:660–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER (2001) L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 276:40–47

    Article  CAS  PubMed  Google Scholar 

  15. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361:1570–1583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jia L, Liu Z, Sun L, Miller SS, Ames BN, Cotman CW, Liu J (2007) Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci 48:339–348

    Article  PubMed Central  PubMed  Google Scholar 

  17. Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4:5

    Article  PubMed Central  PubMed  Google Scholar 

  18. Li AE, Ito H, Rovira II, Kim KS, Takeda K, Yu ZY, Ferrans VJ, Finkel T (1999) A role for reactive oxygen species in endothelial cell anoikis. Circ Res 85:304–310

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Ames BN (2005) Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer’s disease, and Parkinson’s disease. Nutr Neurosci 8:67–89

    Article  CAS  PubMed  Google Scholar 

  20. Moffitt KL, Martin SL, Walker B (2010) From sentencing to execution—the processes of apoptosis. J Pharm Pharmacol 62:547–562

    CAS  PubMed  Google Scholar 

  21. Packer L, Roy S, Sen CK (1997) Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. Adv Pharmacol 38:79–101

    Article  CAS  PubMed  Google Scholar 

  22. Perocchi F, Gohil VM, Girgis HS, Huertas A, Quadri SK, Horiuchi K, Inamdar N, Emin MT, Lindert J, Ten VS, Bhattacharya S, Bhattacharya J (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467:291–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Petrache I, Birukova A, Ramirez SI, Garcia JG, Verin AD (2003) The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol 28:574–581

    Article  CAS  PubMed  Google Scholar 

  24. Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JG (2001) Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 280:L1168–L1178

    CAS  PubMed  Google Scholar 

  25. Prasain N, Stevens T (2009) The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 77:53–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rowlands DJ, Islam MN, Das SR et al (2011) Activation of TNFR1 ectodomain shedding by mitochondrial Ca2+ determines the severity of inflammation in mouse lung microvessels. J Clin Invest 121:1986–1999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sawant DA, Tharakan B, Adekanbi A, Hunter FA, Smythe WR, Childs EW (2011) Inhibition of VE-cadherin proteasomal degradation attenuates microvascular hyperpermeability. Microcirculation 18:46–55

    Article  CAS  PubMed  Google Scholar 

  28. Sawant DA, Tharakan B, Hunter FA, Smythe WR, Childs EW (2011) Role of β-catenin in regulating microvascular endothelial cell hyperpermeability. J Trauma 70:481–487

    Article  CAS  PubMed  Google Scholar 

  29. Sawant DA, Tharakan B, Tobin RP, Reilly J, Hunter FA, Newell MK, Smythe WR, Childs EW (2013) Microvascular endothelial cell hyperpermeability induced by endogenous caspase 3 activator staurosporine. J Trauma Acute Care Surg 74:516–523

    Article  CAS  PubMed  Google Scholar 

  30. Shankar R, Melstrom KA Jr, Gamelli RL (2007) Inflammation and sepsis: past, present, and the future. J Burn Care Res 28:566–571

    Article  PubMed  Google Scholar 

  31. Tharakan B, Hellman J, Sawant DA, Tinsley JH, Parrish AR, Hunter FA, Smythe WR, Childs EW (2012) β-Catenin dynamics in the regulation of microvascular endothelial cell hyperpermeability. Shock 37:306–311

    Article  CAS  PubMed  Google Scholar 

  32. Tharakan B, Holder-Haynes JG, Hunter FA, Childs EW (2008) Alpha lipoic acid attenuates microvascular endothelial cell hyperpermeability by inhibiting the intrinsic apoptotic signaling. Am J Surg 195:174–178

    Article  CAS  PubMed  Google Scholar 

  33. Tharakan B, Hunter FA, Smythe WR, Childs EW (2008) Alpha-lipoic acid attenuates hemorrhagic shock-induced apoptotic signaling and vascular hyperpermeability. Shock 30:571–577

    Article  CAS  PubMed  Google Scholar 

  34. Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial junctional permeability. Ann NY Acad Sci 1123:134–145

    Article  CAS  PubMed  Google Scholar 

  35. van Nieuw Amerongen GP, van Hinsbergh VW (2002) Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vasc Pharmacol 39:257–272

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Texas A&M Health Science Center College of Medicine Integrated Microscopy and Imaging Laboratory.

Funding

This work was supported by a grant (1K01HL07815-01A1) from National Heart, Lung and Blood Institute, National Institutes of Health, USA.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed W. Childs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawant, D.A., Wilson, R.L., Tharakan, B. et al. Tumor necrosis factor-α-induced microvascular endothelial cell hyperpermeability: role of intrinsic apoptotic signaling. J Physiol Biochem 70, 971–980 (2014). https://doi.org/10.1007/s13105-014-0366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0366-8

Keywords

Navigation