Skip to main content

Advertisement

Log in

An ordered clustering algorithm based on fuzzy c-means and PROMETHEE

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The ordered clustering problem in the context of multicriteria decision aid has been increasingly examined in management science and operational research during the past few years. However, the existing clustering algorithms may not provide an exact suggestion for a partition number for decision makers by using the diagram method. In addition, these methods may be not appropriate for real-life problems under big data environments due to their high computational complexities. Therefore, we propose a new clustering algorithm called the ordered fuzzy c-means clustering algorithm (OFCM) to overcome the abovementioned deficiencies. Different from the classical fuzzy c-means clustering algorithm, we use the net outranking flow of PROMETHEE and validity measures for clustering to establish a new objective function, whose properties are mathematically justified as well. Finally, we employ OFCM to solve a practical ordered clustering problem concerning the human development indexes. A comparison analysis with existing approaches is also conducted to validate the efficiency of OFCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belacel N (2000) Multicriteria assignment method PROAFTN: methodology and medical application. Eur J Oper Res 125:175–183

    Article  MATH  Google Scholar 

  2. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York pp 44–47

    Book  MATH  Google Scholar 

  3. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191–203

    Article  Google Scholar 

  4. Boujelben MA (2016) A unicriterion analysis based on the PROMETHEE principles for multicriteria ordered clustering. Omega 69:126–140

    Article  Google Scholar 

  5. Brans JP, Mareschal B (2004) PROMETHEE Methods. In Multiple criteria decision analysis state of the art surveys. Springer, New York pp 163–186

    Google Scholar 

  6. Brans JP, Vincke P, Mareschal B (1986) How to select and how to rank projects: the Promethee method. Eur J Oper Res 24:228–238

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen L, Xu Z, Wang H, Liu S (2016) An ordered clustering algorithm based on K-means and the PROMETHEE method. Int J Mach Learn Cybern 1:1–10

    Google Scholar 

  8. De Smet Y, Gilbart F (2001) A cluster definition method for country risk problem. Tech Rep SMG IS-MG 13: 11–20

    Google Scholar 

  9. De Smet Y, Nemery P, Selvaraj R (2012) An exact algorithm for the multicriteria ordered clustering problem. Omega 40:861–869

    Article  Google Scholar 

  10. Doumpos M, Zopounidis C (2004) A multicriteria classification approach based on pairwise comparisons. Eur J Oper Res 158:378–389

    Article  MathSciNet  MATH  Google Scholar 

  11. Dunn JC (2008) Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics 4:95–104

    Article  MathSciNet  MATH  Google Scholar 

  12. Eppe S, Roland J, De Smet Y (2014) On the use of valued action profiles for relational multi-criteria clustering. Int J Multicri Decis Mak 4:201–205

    Article  Google Scholar 

  13. Ishizaka A, Nemery P (2014) Assigning machines to incomparable maintenance strategies with ELECTRE-SORT. Omega 47:45–59

    Article  Google Scholar 

  14. Meyer P, Olteanu AL (2013) Formalizing and solving the problem of clustering in MCDA. Eur J Oper Res 227:494–502

    Article  MathSciNet  MATH  Google Scholar 

  15. Michalowski W, Rubin S, Slowinski R, Wilk S (2001) Triage of the child with abdominal pain: a clinical algorithm for emergency patient management. Paediatrics Child Health 6:23–28

    Article  Google Scholar 

  16. Militello C et al (2015) Gamma Knife treatment planning: MR brain tumor segmentation and volume measurement based on unsupervised Fuzzy c-Means clustering. Int J Imaging Syst Technol 25:213–225

    Article  Google Scholar 

  17. Mumpower JL, Livingston S, Lee TJ (1987) Expert judgments of political riskiness. J Forecast 6:51–65

    Article  Google Scholar 

  18. Nemery P, Lamboray C (2008) FLOWSORT: a flow-based sorting method with limiting or central profiles. TOP 16:90–113

    Article  MathSciNet  MATH  Google Scholar 

  19. Org Z (1991) The determinants of country risk ratings. J Int Bus Stud 22:135–142

    Article  Google Scholar 

  20. Pacheco J, Casado S, Angel-Bello F, ÁLvarez A (2013) Bi-objective feature selection for discriminant analysis in two-class classification. Knowl Based Syst 44:57–64

    Article  Google Scholar 

  21. Shen L, Tay FEH, Qu L, Shen Y (2000) Fault diagnosis using rough sets. Theory Comput Ind 43:61–72

    Article  Google Scholar 

  22. Siskos Y, Grigoroudis E, Zopounidis C, Saurais O (1998) Measuring customer satisfaction using a collective preference disaggregation model. J Global Optim 12:175–195

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang XZ, Wang YD, Wang LJ (2004) Improving fuzzy c -means clustering based on feature-weight learning. Pattern Recogn Lett 25:1123–1132

    Article  Google Scholar 

  24. Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13:841–847

    Article  Google Scholar 

  25. Xu Z, Wu J (2010) Intuitionistic fuzzy C-means clustering algorithm. J Syst Eng Electron 21:580–590

    Article  Google Scholar 

  26. Yeung D, Wang XZ (2002) Improving performance of similarity-based clustering by feature weight learning. IEEE Trans Pattern Anal Mach Intell 24:556–561

    Article  Google Scholar 

  27. Yu W (1992) ELECTRE TRI: aspects méthodologiques et manuel d’utilisation. PhD thesis, Université Paris-Dauphine :135–140

  28. Zarinbal M, Fazel Zarandi MH, Turksen IB (2014) Interval Type-2 Relative Entropy Fuzzy C-Means clustering. Inf Sci 260:49–72

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang Z, Gao G, Tian Y (2015) Multi-kernel multi-criteria optimization classifier with fuzzification and penalty factors for predicting biological activity. Knowl-Based Syst 89:301–313

    Article  Google Scholar 

  30. Zheng Y, Byeungwoo J, Xu D, Wu QMJ, Hui Z (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28:4024–4028

    Google Scholar 

  31. Zhu H, Tsang E, Wang XZ et al (2017) Monotonic classification extreme learning machine. Neurocomputing 225:205–213

    Article  Google Scholar 

  32. Zopounidis C, Doumpos M (1999) Business failure prediction using the UTADIS multicriteria analysis method. J Oper Res Soc 50:1138–1148

    Article  MATH  Google Scholar 

  33. Zopounidis C, Doumpos M (2002) Multicriteria classification and sorting methods: a literature review. Eur J Oper Res 138:229–246

    Article  MATH  Google Scholar 

  34. Zopounidis C, Doumpos M, Zanakis S (1999) Stock evaluation using a preference disaggregation methodology. Decis Sci 30:313–336

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (No. 51609254) and the Specific Fund (CQZ-2014001) for the Industrial Site in the City of Tangshan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 354 KB)

Appendix

Appendix

See Table 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Zhang, R., Qian, L. et al. An ordered clustering algorithm based on fuzzy c-means and PROMETHEE. Int. J. Mach. Learn. & Cyber. 10, 1423–1436 (2019). https://doi.org/10.1007/s13042-018-0824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0824-7

Keywords

Navigation