Advertisement

Breeding of Lignocellulosic Bioethanol Feedstock

  • Yong Suk Chung
  • Jongyun Kim
  • Changsoo Kim
Review Paper
  • 74 Downloads

Abstract

As sustainability becomes a pivotal issue worldwide, biofuel from plants has been highlighted as an alternative to energy from fossil fuels. In the current review, we focused on improving the efficiency of lignocellulosic bioethanol production from high dry matter-producing Miscanthus and switchgrass species by understanding these species’ genetic traits and responses to various stresses. The most recent findings regarding biomass quality and bioethanol conversion processes are discussed in this review, including goals of current feedstock breeding programs, followed by up-to-date genetics and genomics resources to provide optimal breeding approaches for Miscanthus and switchgrass species. We revisited previous breeding approaches using bmr mutations, ethyl methanesulfonate (EMS), next generation sequencing (NGS), genome-wide association study (GWAS), and transgenic resources, which can be a basis for improving sustainable biomass and biofuel production through these two species. This review may provide background for researchers and breeders to further improve breeding approaches.

Key words

Bioenergy biofuel Miscanthus genetics genomics transgene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aden A, Foust T. 2009. Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16: 535–545CrossRefGoogle Scholar
  2. Ahonsi M, Ames K, Gray M, Bradley C. 2013. Biomass Reducing Potential and Prospective Fungicide Control of a New Leaf Blight of Miscanthus × giganteus Caused by Leptosphaerulina chartarum. Bioenerg. Res. 6: 737–745CrossRefGoogle Scholar
  3. Ahonsi MO, BO Agindotan, ME Gray, Bradley CA. 2011. First Report of Basal Stem Rot and Foliar Blight Caused by Pythium sylvaticum on Miscanthus sinensis in Illinois. Plant Dis. 95: 616–616CrossRefGoogle Scholar
  4. Ahonsi MO, Agindotan BO, Williams DW, Arundale R, Gray ME, Voigt TB et al. 2010. First Report of Pithomyces chartarum Causing a Leaf Blight of Miscanthus × giganteus in Kentucky. Plant Dis. 4: 480–480CrossRefGoogle Scholar
  5. Al-Amoodi LK, Moser LE, Burson BL, Sollenberger LE. 2004. Warm-Season (C4) GrassesAmerican society of Agronomy, Medison, WisconsinGoogle Scholar
  6. Atienza SG, Ramirez MC, Martin A. 2003a. Mapping-QTLs controlling flowering date in Miscanthus sinensis Anderss. Cereal Res. Commun. 31: 265–271Google Scholar
  7. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A. 2003b. Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica 132: 353–361CrossRefGoogle Scholar
  8. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. 2003. Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theor. Appl. Genet. 107: 123–129PubMedGoogle Scholar
  9. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. 2003. Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor. Appl. Genet. 107: 857–863PubMedCrossRefGoogle Scholar
  10. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. 2003. Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content. Plant Breed. 122: 141–145CrossRefGoogle Scholar
  11. Atienza SG, Satovic Z, Peterson KK, Dolstra O. 2002. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor. Appl. Genet. 105: 946–952PubMedCrossRefGoogle Scholar
  12. Beale CV, Long SP. 1997. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 12: 419–428CrossRefGoogle Scholar
  13. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC et al. 2012. Reference genome sequence of the model plant Setaria. Nature Biotechnol. 30: 555–561CrossRefGoogle Scholar
  14. Bhuiyan NH, Selvaraj G, Wei Y, King J. 2009. Role of lignification in plant defense. Plant signaling behav. 4: 158–159CrossRefGoogle Scholar
  15. Boe, A, DK Lee. 2007. Genetic Variation for Biomass Production in Prairie Cordgrass and Switchgrass Crop Sci. 47: 929–934Google Scholar
  16. Bouton J. 2008. Improvement of Switchgrass as a Bioenergy Crop. In: W. Vermerris, editor Genetic Improvement of Bioenergy Crops. Springer, New York. p. 309–345CrossRefGoogle Scholar
  17. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007Google Scholar
  18. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633–2635Google Scholar
  19. Bradshaw JD, Prasifka JR, Steffey KL, Gray ME. 2010. First report of field populations of two potential aphid pests of the boenergy crop Miscanthus × giganteus. Fla. Entomol. 93: 135–137CrossRefGoogle Scholar
  20. Brudno M, Poliakov A, Minovitsky S, Ratnere I, Dubchak I. 2007. Multiple whole genome alignments and novel biomedical applications at the VISTA portal. Nucleic Acids Res. 35: 669–674CrossRefGoogle Scholar
  21. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C et al. 2009. The genetic architecture of maize flowering time. Science 325: 714–718PubMedCrossRefGoogle Scholar
  22. Cadoux S, Riche AB, Yates NE, Machet J-M. 2012. Nutrient requirements of Miscanthus x giganteus: Conclusions from a review of published studies. Biomass Bioenergy 38: 14–22CrossRefGoogle Scholar
  23. Cai Q, Aitken KS, Fan YH, Piperidis G, Jackson P, McIntyre CL. 2005. A preliminary assessment of the genetic relationship between Erianthus rockii and the “Saccharum complex” using microsatellite (SSR) and AFLP markers. Plant Sci. 169: 976–984CrossRefGoogle Scholar
  24. Casler MD, Stendal CA, Kapich L, Vogel. 2007 KP. Genetic Diversity, Plant Adaptation Regions, and Gene Pools for Switchgrass Crop Sci. 47: 2261–2273CrossRefGoogle Scholar
  25. Casler MD, Vogel KP, Taliaferro CM, Ehlke NJ, Berdahl JD, Brummer EC et al. 2007. Latitudinal and Longitudinal Adaptation of Switchgrass Populations Crop Sci. 47: 2249–2260Google Scholar
  26. Cateto C, Hu G, Ragauskas A. 2011. Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ. Sci. 4: 1516–1521CrossRefGoogle Scholar
  27. Chatani M, Matsumoto Y, Mizuta H, Ikegami M, Boulton MI, Davies JW. 1991. The nucleotide sequence and genome structure of the geminivirus Miscanthus streak virus. J. Gen. Virol. 72: 2325–2331PubMedCrossRefGoogle Scholar
  28. Chernoglazov VM, Ermolova OV, Klyosov AA. 1988. Adsorption of high-purity endo-1,4-β-glucanases from Trichoderma reesei on components of lignocellulosic materials: Cellulose, lignin, and xylan. Enzyme Microb. Technol. 10: 503–507CrossRefGoogle Scholar
  29. Christian DG, Lamptey JNL, Forde SMD, Plumb RT. 1994. First report of barley yellow dwarf luteovirus on Miscanthus in the United Kingdom. Eur. J. Plant Pathol. 100: 167–170CrossRefGoogle Scholar
  30. Christian DG, Riche AB, Yates NE. 2008. Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind. Crops Prod. 28: 320–327CrossRefGoogle Scholar
  31. Corredor DY, Salazar JM, Hohn KL, Bean S, Bean B, Wang D. 2009. Evaluation and characterization of forage Sorghum as feedstock for fermentable sugar production. Appl. biochem. biotechnol. 158: 164–179PubMedCrossRefGoogle Scholar
  32. Costich DE, Friebe B, Sheehan MJ, Casler MD, Buckler ES. 2010. Genome-size Variation in Switchgrass (Panicum virgatum): Flow Cytometry and Cytology Reveal Rampant Aneuploidy. Plant Genome 3: 130–141CrossRefGoogle Scholar
  33. Craufurd PQ, Flower DJ, Peacock JM. 1993. Effect of Heat and Drought Stress on Sorghum (Sorghum bicolor). I. Panicle Development and Leaf Appearance. Exp. Agric. 29: 61–76Google Scholar
  34. Craufurd PQ, Qi A. 2001. Photothermal adaptation of sorghum (Sorghum bicolour) in Nigeria. Agr. For. Meteorol. 108: 199–211CrossRefGoogle Scholar
  35. Crouch JA, Beirn LA, Cortese LM, Bonos SA, Clarke BB. 2009. Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas. Mycol. Res. 113: 1411–1421PubMedCrossRefGoogle Scholar
  36. Davis S, Parton W, Dohleman F, Smith C, Grosso S, Kent A et al. 2010. Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low Greenhouse Gas Emissions in a Miscanthus × giganteus agro-Ecosystem. Ecosystems 13: 144–156CrossRefGoogle Scholar
  37. Dendy SP, AG Power AG, Blaisdell GK, Alexander HM, McCarron JK, Garrett KA. 2004. Barley yellow dwarf disease in natural populations of dominant tallgrass prairie species in Kansas. Plant Dis. 88: 574Google Scholar
  38. Dierking RM, Allen DJ, Brouder SM, Volenec JJ. 2016. Yield, biomass composition, and N use efficiency during establishment of four Miscanthus × giganteus genotypes as influenced by N management. Biomass Bioenergy 91: 98–107CrossRefGoogle Scholar
  39. Ellis RH, A Qi, Craufurd PQ, Summerfield RJ, Roberts EH. 1997. Effects of Photoperiod, Temperature and Asynchrony between Thermoperiod and Photoperiod on Development to Panicle Initiation in Sorghum. Ann. Bot. 79: 169–178CrossRefGoogle Scholar
  40. Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN. 2001. Do enzymatic hydrolyzability and Simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol. Prog. 17: 1049–1054Google Scholar
  41. Falter C, Voigt C. 2014. Comparative Cellular Analysis of Pathogenic Fungi with a Disease Incidence in Brachypodium distachyon and Miscanthus x giganteus. Bioenerg. Res. 7: 958–973CrossRefGoogle Scholar
  42. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M et al. 2011. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl.Acad. Sci. 108: 3803–3808PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J et al. 2011. Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenerg. Res. 4: 153–164CrossRefGoogle Scholar
  44. Galbe M, Zacchi G. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59: 618–628CrossRefGoogle Scholar
  45. Gifford JM, Chae WB, Swaminathan K, Moose SP, Juvik JA. 2014. Mapping the genome of Miscanthus sinensis for QTL associated with biomass productivity. GCB Bioenergy. 7: 797–810CrossRefGoogle Scholar
  46. Gnansounou E, Dauriat A. 2010. Techno-economic analysis of lignocellulosic ethanol: A review. Bioresour. Technol. 101: 4980–4991PubMedCrossRefGoogle Scholar
  47. Grattapaglia D, Sederoff R. 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross: Mapping strategy and RAPD markers. Genetics 137: 1121–1137PubMedPubMedCentralGoogle Scholar
  48. Gravert CE, Tiffany LH, Munkvold GP. 2000. Outbreak of Smut Caused by Tilletia maclaganii on Cultivated Switchgrass in Iowa. Plant Dis. 84: 596–596.CrossRefGoogle Scholar
  49. Grethlein HE. 1985. The Effect of Pore Size Distribution on the Rate of Enzymatic Hydrolysis of Cellulosic Substrates. Nature Biotechnol. 3: 155–160CrossRefGoogle Scholar
  50. Hansen J, Sato M. 2004. Greenhouse gas growth rates. Proc. Natl. Acad. Sci. 101: 16109–16114PubMedPubMedCentralCrossRefGoogle Scholar
  51. Heaton EA, Dohleman FG, Long SP. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob. Change Biol. 14: 2000–2014CrossRefGoogle Scholar
  52. Heaton EA, Dohleman FG, Long SP. 2009. Seasonal nitrogen dynamics of Miscanthus×giganteus and Panicum virgatum. GCB Bioenergy 1: 297–307CrossRefGoogle Scholar
  53. Hernández P, Dorado G, Laurie DA, Martín A, Snape JW. 2001. Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor. Appl. Genet. 102: 616–622CrossRefGoogle Scholar
  54. Ho CW, Wu TH, Hsu TW, Huang JC, Huang CC, Chiang TY. 2011. Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae). Am. J. Bot. 98: e201–e203CrossRefGoogle Scholar
  55. Huang H-J, Ramaswamy S, Al-Dajani W, Tschirner U, Cairncross RA. 2009. Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass Bioenergy 33: 234–246CrossRefGoogle Scholar
  56. Jackson LS, Joyce TW, Heitmann JA, JA Giesbrecht JA. 1996. Enzyme activity recovery from secondary fiber treated with cellulase and xylanase. Journal of Biotechnology 45: 33–44CrossRefGoogle Scholar
  57. Jakob K, Zhou F, Paterson A. 2009. Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell.Dev.Biol.-Plant 45: 291–305CrossRefGoogle Scholar
  58. Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown J. 2011. Characterization of flowering time diversity in Miscanthus species. GCB Bioenergy 3: 387–400CrossRefGoogle Scholar
  59. Jensen E, Robson P, Norris J, Cookson A, Farrar K, Donnison I et al. 2013. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. J. Exp. Bot. 64: 541–552CrossRefGoogle Scholar
  60. Jensen E, Squance M, Hastings A, Jones S, Farrar K, Huang L et al. 2011. Understanding the value of hydrothermal time on flowering in Miscanthus species. Asp. Appl. Biol. 112: 181–189Google Scholar
  61. Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W et al. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genet. 45: 957–961PubMedCrossRefGoogle Scholar
  62. Kim C, Lee TH, Guo H, Chung SJ, Paterson AH, Kim DS et al. 2014. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships. BMC Plant Biol. 14: 134PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kim C, Tang H, Paterson AH. 2009. Duplication and divergence of grass genomes: Integrating the Cloridoids. Trop. Plant Biol. 2: 51–62CrossRefGoogle Scholar
  64. Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B et al. 2012. SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theor. Appl. Genet. 124: 1325–1338CrossRefGoogle Scholar
  65. Kim Y, Mosier NS, Ladisch MR, Pallapolu VR, Lee YY, Garlock R et al. 2011. Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Bioresour. technol. 102: 11089–11096PubMedCrossRefGoogle Scholar
  66. Kissel DE, Sonon L. 2008. Fertilizer recommendations by crops, categorized. Soil Test Handbook for Georgia. University of Georgia, Agricultural and Environmental Services Laboratories, Athens, GA, USAGoogle Scholar
  67. Lambers H, Chapin FSI, Pons TL. 1998. Plant Physiological EcologySpringer, New YorkGoogle Scholar
  68. Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V. 2004. MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res. 32: D393–397PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lee D, Yu AH, Saddler JN. 1995. Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol. Bioeng. 45: 328–336PubMedCrossRefGoogle Scholar
  70. Lee MH, Brewbaker JL. 1984. Effects of Brown Midrib-3 on Yields and Yield Components of Maize. Crop Sci. 24: 105–108CrossRefGoogle Scholar
  71. Lee TH, Tang H, Wang X, Paterson AH. 2013. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res. 41: D1152–1158PubMedCrossRefGoogle Scholar
  72. Li G, Serba DD, Saha MC, Bouton JH, Lanzatella CL, Tobias CM. 2014. Genetic Linkage Mapping and Transmission Ratio Distortion in a Three-Generation Four-Founder Population of Panicum virgatum (L.). G3 4: 913–923PubMedCentralGoogle Scholar
  73. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J et al. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genet. 45: 43–50PubMedCrossRefGoogle Scholar
  74. Liu L, Wu Y, Wang Y, Samuels T. 2012. A high-density simple sequence repeat-based genetic linkage map of switchgrass. G3 2: 357–370Google Scholar
  75. Long AC. 1976. A large varietal difference in cane deterioration due to flowering. SASTA Proc. 50: 78–81Google Scholar
  76. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD et al. 2013. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genetics 9: e1003215CrossRefGoogle Scholar
  77. Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H et al. 2008. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 148: 1772–1781PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S et al. 2012. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS One 7: e33821CrossRefGoogle Scholar
  79. Manzoni S, Jackson R, Trofymow JA, Porporato A. 2008. The global stoichiometry of litter nitrogen mineralization. Science 321: 684–686PubMedCrossRefGoogle Scholar
  80. McCallum CM, Comai L, Greene EA, Henikoff S. 2000. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiology 123: 439–442PubMedPubMedCentralCrossRefGoogle Scholar
  81. McKendrick JD, Owensby CE, Hyde RM. 1975. Big bluestem and indiangrass vegetative reproduction and annual reserve carbohydrate and nitrogen cycles. Agro-Ecosystems 2: 75–93CrossRefGoogle Scholar
  82. McLaughlin SB, Kszos LA. 2005. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28: 515–535CrossRefGoogle Scholar
  83. McLaughlin SB, Kiniry JR, Taliaferro CM, Ugarte DD. 2006. Projecting Yield and Utilization Potential of Switchgrass as an Energy Crop. In: L. S. Donald, editor Adv. Agron. Academic Press. p. 267–297Google Scholar
  84. Mekete T, Gray ME, Niblack TL. 2009. Distribution, morphological description, and molecular characterization of Xiphinema and Longidorous spp. associated with plants (Miscanthus spp. and Panicum virgatum) used for biofuels. GCB Bioenergy 1: 257–266CrossRefGoogle Scholar
  85. Mekete T, Reynolds K, Lopez-Nicora HD, Gray ME, Niblack TL. 2010. Plant-Parasitic Nematodes Are Potential Pathogens of Miscanthus × giganteus and Panicum virgatum Used for Biofuels. Plant Dis. 95: 413–418CrossRefGoogle Scholar
  86. Miller JE, Geadelmann JL, Marten GC. 1983. Effect of the Brown Midrib-Allele on Maize Silage Quality and Yield. Crop Sci. 23: 493–496CrossRefGoogle Scholar
  87. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD et al. 2013. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. 110: 453–458PubMedCrossRefGoogle Scholar
  88. Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM. 2010. Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185: 745–760PubMedPubMedCentralCrossRefGoogle Scholar
  89. Palonen H, Tjerneld F, Zacchi G, Tenkanen M. 2004. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J. Biotechnol. 107: 65–72Google Scholar
  90. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556PubMedCrossRefGoogle Scholar
  91. Prasifka J, Bradshaw J, Boe A, Lee D, Adamski D, Gray M. 2010. Symptoms, Distribution and Abundance of the Stem-Boring Caterpillar, Blastobasis repartella (Dietz), in Switchgrass. Bioenerg. Res. 3: 238–242CrossRefGoogle Scholar
  92. Prasifka JR, Bradshaw JD, Gray ME. 2012. Potential Biomass Reductions to Miscanthus × giganteus by Stem-Boring Caterpillars. Environ. Entomol. 41: 865–871CrossRefGoogle Scholar
  93. Pusz W, Plaskowska E. 2010. Stagonospora tainanensis -new pathogen of giant miscanthus (Miscanthus x giganteus) in Poland. Phytopathologia 57: 39–43Google Scholar
  94. Ramos L, Saddler J. 1994. Enzyme recycling during fed-batch hydrolysis of cellulose derived from steam-exploded Eucalyptus viminalis. Appl. Biochem. Biotechnol. 45-46: 193–207CrossRefGoogle Scholar
  95. Rayburn AL, Crawford J, Rayburn CM, Juvik JA. 2009. Genome size of Three Miscanthus species. Plant Mol. Biol. Report. 27: 184–188CrossRefGoogle Scholar
  96. Richard TL. 2010. Challenges in scaling up biofuels infrastructure. Science 329: 793–796PubMedCrossRefGoogle Scholar
  97. Runge CF, Senauer B. 2007. How biofuels could starve the poor. Foreign Affair 86: 41–53Google Scholar
  98. Saballos A. 2008. Development and utilization of sorghum as a bioenergy crop. In: W. Vermerris, editor Genetic Improvement of Bioenergy Crops. Springer, New York. p. 211–248CrossRefGoogle Scholar
  99. Sanderson MA, Egg RP, Wiselogel AE. 1997. Biomass losses during harvest and storage of switchgrass. Biomass Bioenergy 12: 107–114CrossRefGoogle Scholar
  100. Scauflaire J, Gourgue M, Foucart G, Renard F, Vandeputte F, Munaut F. 2013. Fusarium miscanthi and other Fusarium species as causal agents of Miscanthus × giganteus rhizome rot. Eur. J. Plant Pathol. 137: 1–3CrossRefGoogle Scholar
  101. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115PubMedCrossRefGoogle Scholar
  102. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J et al. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319: 1238–1240PubMedGoogle Scholar
  103. Selvi A, Nair NV, Balasundaram N, Mohapatra T. 2003. Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46: 394–403PubMedCrossRefGoogle Scholar
  104. Serba D, Daverdin G, Bouton J, Devos K, Brummer EC, Saha M. 2015. Quantitative Trait Loci (QTL) Underlying Biomass Yield and Plant Height in Switchgrass. Bioenerg. Res. 2015, 8: 307–324CrossRefGoogle Scholar
  105. Serba D, Wu L, Daverdin G, Bahri B, Wang X, Kilian A et al. 2013. Linkage Maps of Lowland and Upland Tetraploid Switchgrass Ecotypes. Bioenerg. Res. 6: 953–965CrossRefGoogle Scholar
  106. Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DG et al. 2012. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol. 193: 121–136PubMedCrossRefGoogle Scholar
  107. Shinners KJ, Binversie BN. 2007. Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt. Biomass Bioenergy 31: 576–584CrossRefGoogle Scholar
  108. Si S, Chen Y, Fan C, Hu H, Li Y, Huang J et al. 2015. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour. Technol. 183: 248–254PubMedCrossRefGoogle Scholar
  109. Sill WH. 1957. Panicum mosaic, a new virus disease of Panicum virgatum and related grasses. Phytopathol. 47: 31Google Scholar
  110. Slavov G, Robson P, Jensen E, Hodgson E, Farrar K, Allison G et al. 2013. Contrasting geographic patterns of genetic variation for molecular markers vs. phenotypic traits in the energy grass Miscanthus sinensis. GCB Bioenergy 5: 562–571Google Scholar
  111. Somleva MN, Tomaszewski Z, Conger BV. 2002. Agrobacteriummediated genetic transformation of switchgrass. Crop Sci. 42: 2080–2087CrossRefGoogle Scholar
  112. Stich B, Melchinger AE. 2010. An introduction to association mapping in plants. CAB Rev. 5: 1–9CrossRefGoogle Scholar
  113. Muthamilarasan M, Misra G, Prasad M. 2013. FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS One 8: e71418CrossRefGoogle Scholar
  114. Swaminathan K, Chae WB, x Mitros WB, x Varala WB, Xie L, Barling A et al. 2012. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics 13: 142PubMedPubMedCentralCrossRefGoogle Scholar
  115. Taylor SH, Hulme SP, Rees M, Ripley BS, Woodward FI, Osborne CP. 2010. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185: 780–791PubMedCrossRefGoogle Scholar
  116. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S et al. 2011. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genet. 43: 159–162PubMedCrossRefGoogle Scholar
  117. Tobias C, Twigg P, Hayden D, Voge K, Mitchell R, Lazo G et al. 2005. Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor. Appl. Genet. 111: 956–964PubMedCrossRefGoogle Scholar
  118. Tu M, Chandra RP, Saddler JN. 2007. Evaluating the Distribution of Cellulases and the Recycling of Free Cellulases during the Hydrolysis of Lignocellulosic Substrates. Biotechnol. Prog. 23: 398–406PubMedCrossRefGoogle Scholar
  119. Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y et al. 2012. Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 158: 590–600PubMedCrossRefGoogle Scholar
  120. Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC. 2007. Molecular Breeding to Enhance Ethanol Production from Corn and Sorghum Stover. Crop Sci. 47: S-142-S-153Google Scholar
  121. Vu AL, Dee MM, Zale J, Gwinn KD, Ownley BH. 2013. First Report of Leaf Spot caused by Bipolaris oryzae on Switchgrass in Tennessee. Plant Dis. 97: 1654–1654CrossRefGoogle Scholar
  122. Wang XUN, Yamada T, Kong F-J, Abe Y, Hoshino Y, Sato H et al. 2011. Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop. GCB Bioenergy 3: 322–332CrossRefGoogle Scholar
  123. Wang Y, Zeng X, Iyer NJ, Bryant DW, Mockler TC, Mahalingam R. 2012. Exploring the switchgrass transcriptome using secondgeneration sequencing technology. PLoS One 7: e34225CrossRefGoogle Scholar
  124. Wong KK, Deverell KF, Mackie KL, Clark TA, Donaldson LA. 1988. The relationship between fiber-porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol. Bioengineer. 31: 447–456CrossRefGoogle Scholar
  125. Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M et al. 2011. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour. Technol. 102: 4793–4799PubMedCrossRefGoogle Scholar
  126. Xiao Z, Zhang X, Gregg DJ, Saddler JN. 2004. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 115: 1115–1126CrossRefGoogle Scholar
  127. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. 2011. Deactivation of cellulases by phenols. EnzymeMicrob. Technol. 48: 54–60CrossRefGoogle Scholar
  128. Xu B, Sathitsuksanoh N, Tang Y, Udvardi MK, Zhang JY, Shen Z et al. 2012. Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS One 7: e47399CrossRefGoogle Scholar
  129. Yan J, Chen W, Luo F, Ma H, Meng A, Li X et al. 2012. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4: 49–60CrossRefGoogle Scholar
  130. Yan J, Zhu C, Liu W, Luo F, Mi J, Ren Y et al. 2015. High photosynthetic rate and water use efficiency of Miscanthus lutarioriparius characterize an energy crop in the semiarid temperate region. GCB Bioenergy 7: 207–218CrossRefGoogle Scholar
  131. Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H et al. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem. 72: 805–810PubMedCrossRefGoogle Scholar
  132. Zale J, Freshour L, Agarwal S, Sorochan J, Ownley BH, Gwinn KD et al. 2008. First Report of Rust on Switchgrass (Panicum virgatum) Caused by Puccinia emaculata in Tennessee. Plant Dis. 92: 1710–1710CrossRefGoogle Scholar
  133. Zeiders KE 1984. Helminthosporium spot blotch of switchgrass in Pennsylvania. Plant Dis. 68: 120–122CrossRefGoogle Scholar
  134. Zhang D, Guo H, Kim C, Lee TH, Li J, Robertson J et al. 2013. CSGRqtl, a comparative quantitative trait locus database for Saccharinae grasses. Plant physiol. 161: 594–599PubMedCrossRefGoogle Scholar
  135. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S et al. 2012. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnol. 30: 549–554CrossRefGoogle Scholar
  136. Zhao H, Wang B, He J, Yang J, Pan L, Sun D et al. 2013. Genetic diversity and population structure of Miscanthus sinensis germplasm in China. PLoS One 8: e75672CrossRefGoogle Scholar

Copyright information

© Korean Society of Crop Science and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Crop ScienceChungnam National UniversityDaejeonSouth Korea
  2. 2.Division of BiotechnologyKorea UniversitySeoulSouth Korea

Personalised recommendations