Skip to main content

Advertisement

Log in

Breeding of Lignocellulosic Bioethanol Feedstock

  • Review Paper
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

As sustainability becomes a pivotal issue worldwide, biofuel from plants has been highlighted as an alternative to energy from fossil fuels. In the current review, we focused on improving the efficiency of lignocellulosic bioethanol production from high dry matter-producing Miscanthus and switchgrass species by understanding these species’ genetic traits and responses to various stresses. The most recent findings regarding biomass quality and bioethanol conversion processes are discussed in this review, including goals of current feedstock breeding programs, followed by up-to-date genetics and genomics resources to provide optimal breeding approaches for Miscanthus and switchgrass species. We revisited previous breeding approaches using bmr mutations, ethyl methanesulfonate (EMS), next generation sequencing (NGS), genome-wide association study (GWAS), and transgenic resources, which can be a basis for improving sustainable biomass and biofuel production through these two species. This review may provide background for researchers and breeders to further improve breeding approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aden A, Foust T. 2009. Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16: 535–545

    Article  CAS  Google Scholar 

  • Ahonsi M, Ames K, Gray M, Bradley C. 2013. Biomass Reducing Potential and Prospective Fungicide Control of a New Leaf Blight of Miscanthus × giganteus Caused by Leptosphaerulina chartarum. Bioenerg. Res. 6: 737–745

    Article  CAS  Google Scholar 

  • Ahonsi MO, BO Agindotan, ME Gray, Bradley CA. 2011. First Report of Basal Stem Rot and Foliar Blight Caused by Pythium sylvaticum on Miscanthus sinensis in Illinois. Plant Dis. 95: 616–616

    Article  Google Scholar 

  • Ahonsi MO, Agindotan BO, Williams DW, Arundale R, Gray ME, Voigt TB et al. 2010. First Report of Pithomyces chartarum Causing a Leaf Blight of Miscanthus × giganteus in Kentucky. Plant Dis. 4: 480–480

    Article  Google Scholar 

  • Al-Amoodi LK, Moser LE, Burson BL, Sollenberger LE. 2004. Warm-Season (C4) GrassesAmerican society of Agronomy, Medison, Wisconsin

    Google Scholar 

  • Atienza SG, Ramirez MC, Martin A. 2003a. Mapping-QTLs controlling flowering date in Miscanthus sinensis Anderss. Cereal Res. Commun. 31: 265–271

    CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martín A. 2003b. Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica 132: 353–361

    Article  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. 2003. Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theor. Appl. Genet. 107: 123–129

    CAS  PubMed  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. 2003. Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor. Appl. Genet. 107: 857–863

    Article  CAS  PubMed  Google Scholar 

  • Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. 2003. Influencing combustion quality in Miscanthus sinensis Anderss.: identification of QTLs for calcium, phosphorus and sulphur content. Plant Breed. 122: 141–145

    Article  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Peterson KK, Dolstra O. 2002. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor. Appl. Genet. 105: 946–952

    Article  CAS  PubMed  Google Scholar 

  • Beale CV, Long SP. 1997. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 12: 419–428

    Article  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC et al. 2012. Reference genome sequence of the model plant Setaria. Nature Biotechnol. 30: 555–561

    Article  CAS  Google Scholar 

  • Bhuiyan NH, Selvaraj G, Wei Y, King J. 2009. Role of lignification in plant defense. Plant signaling behav. 4: 158–159

    Article  CAS  Google Scholar 

  • Boe, A, DK Lee. 2007. Genetic Variation for Biomass Production in Prairie Cordgrass and Switchgrass Crop Sci. 47: 929–934

    Google Scholar 

  • Bouton J. 2008. Improvement of Switchgrass as a Bioenergy Crop. In: W. Vermerris, editor Genetic Improvement of Bioenergy Crops. Springer, New York. p. 309–345

    Chapter  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007

  • TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633–2635

  • Bradshaw JD, Prasifka JR, Steffey KL, Gray ME. 2010. First report of field populations of two potential aphid pests of the boenergy crop Miscanthus × giganteus. Fla. Entomol. 93: 135–137

    Article  Google Scholar 

  • Brudno M, Poliakov A, Minovitsky S, Ratnere I, Dubchak I. 2007. Multiple whole genome alignments and novel biomedical applications at the VISTA portal. Nucleic Acids Res. 35: 669–674

    Article  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C et al. 2009. The genetic architecture of maize flowering time. Science 325: 714–718

    Article  CAS  PubMed  Google Scholar 

  • Cadoux S, Riche AB, Yates NE, Machet J-M. 2012. Nutrient requirements of Miscanthus x giganteus: Conclusions from a review of published studies. Biomass Bioenergy 38: 14–22

    Article  CAS  Google Scholar 

  • Cai Q, Aitken KS, Fan YH, Piperidis G, Jackson P, McIntyre CL. 2005. A preliminary assessment of the genetic relationship between Erianthus rockii and the “Saccharum complex” using microsatellite (SSR) and AFLP markers. Plant Sci. 169: 976–984

    Article  CAS  Google Scholar 

  • Casler MD, Stendal CA, Kapich L, Vogel. 2007 KP. Genetic Diversity, Plant Adaptation Regions, and Gene Pools for Switchgrass Crop Sci. 47: 2261–2273

    Article  CAS  Google Scholar 

  • Casler MD, Vogel KP, Taliaferro CM, Ehlke NJ, Berdahl JD, Brummer EC et al. 2007. Latitudinal and Longitudinal Adaptation of Switchgrass Populations Crop Sci. 47: 2249–2260

    Google Scholar 

  • Cateto C, Hu G, Ragauskas A. 2011. Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ. Sci. 4: 1516–1521

    Article  CAS  Google Scholar 

  • Chatani M, Matsumoto Y, Mizuta H, Ikegami M, Boulton MI, Davies JW. 1991. The nucleotide sequence and genome structure of the geminivirus Miscanthus streak virus. J. Gen. Virol. 72: 2325–2331

    Article  CAS  PubMed  Google Scholar 

  • Chernoglazov VM, Ermolova OV, Klyosov AA. 1988. Adsorption of high-purity endo-1,4-β-glucanases from Trichoderma reesei on components of lignocellulosic materials: Cellulose, lignin, and xylan. Enzyme Microb. Technol. 10: 503–507

    Article  CAS  Google Scholar 

  • Christian DG, Lamptey JNL, Forde SMD, Plumb RT. 1994. First report of barley yellow dwarf luteovirus on Miscanthus in the United Kingdom. Eur. J. Plant Pathol. 100: 167–170

    Article  Google Scholar 

  • Christian DG, Riche AB, Yates NE. 2008. Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind. Crops Prod. 28: 320–327

    Article  Google Scholar 

  • Corredor DY, Salazar JM, Hohn KL, Bean S, Bean B, Wang D. 2009. Evaluation and characterization of forage Sorghum as feedstock for fermentable sugar production. Appl. biochem. biotechnol. 158: 164–179

    Article  CAS  PubMed  Google Scholar 

  • Costich DE, Friebe B, Sheehan MJ, Casler MD, Buckler ES. 2010. Genome-size Variation in Switchgrass (Panicum virgatum): Flow Cytometry and Cytology Reveal Rampant Aneuploidy. Plant Genome 3: 130–141

    Article  Google Scholar 

  • Craufurd PQ, Flower DJ, Peacock JM. 1993. Effect of Heat and Drought Stress on Sorghum (Sorghum bicolor). I. Panicle Development and Leaf Appearance. Exp. Agric. 29: 61–76

    Google Scholar 

  • Craufurd PQ, Qi A. 2001. Photothermal adaptation of sorghum (Sorghum bicolour) in Nigeria. Agr. For. Meteorol. 108: 199–211

    Article  Google Scholar 

  • Crouch JA, Beirn LA, Cortese LM, Bonos SA, Clarke BB. 2009. Anthracnose disease of switchgrass caused by the novel fungal species Colletotrichum navitas. Mycol. Res. 113: 1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Davis S, Parton W, Dohleman F, Smith C, Grosso S, Kent A et al. 2010. Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low Greenhouse Gas Emissions in a Miscanthus × giganteus agro-Ecosystem. Ecosystems 13: 144–156

    Article  CAS  Google Scholar 

  • Dendy SP, AG Power AG, Blaisdell GK, Alexander HM, McCarron JK, Garrett KA. 2004. Barley yellow dwarf disease in natural populations of dominant tallgrass prairie species in Kansas. Plant Dis. 88: 574

    Google Scholar 

  • Dierking RM, Allen DJ, Brouder SM, Volenec JJ. 2016. Yield, biomass composition, and N use efficiency during establishment of four Miscanthus × giganteus genotypes as influenced by N management. Biomass Bioenergy 91: 98–107

    Article  CAS  Google Scholar 

  • Ellis RH, A Qi, Craufurd PQ, Summerfield RJ, Roberts EH. 1997. Effects of Photoperiod, Temperature and Asynchrony between Thermoperiod and Photoperiod on Development to Panicle Initiation in Sorghum. Ann. Bot. 79: 169–178

    Article  Google Scholar 

  • Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN. 2001. Do enzymatic hydrolyzability and Simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol. Prog. 17: 1049–1054

    CAS  Google Scholar 

  • Falter C, Voigt C. 2014. Comparative Cellular Analysis of Pathogenic Fungi with a Disease Incidence in Brachypodium distachyon and Miscanthus x giganteus. Bioenerg. Res. 7: 958–973

    Article  CAS  Google Scholar 

  • Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M et al. 2011. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl.Acad. Sci. 108: 3803–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J et al. 2011. Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. Bioenerg. Res. 4: 153–164

    Article  Google Scholar 

  • Galbe M, Zacchi G. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59: 618–628

    Article  CAS  Google Scholar 

  • Gifford JM, Chae WB, Swaminathan K, Moose SP, Juvik JA. 2014. Mapping the genome of Miscanthus sinensis for QTL associated with biomass productivity. GCB Bioenergy. 7: 797–810

    Article  CAS  Google Scholar 

  • Gnansounou E, Dauriat A. 2010. Techno-economic analysis of lignocellulosic ethanol: A review. Bioresour. Technol. 101: 4980–4991

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R. 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross: Mapping strategy and RAPD markers. Genetics 137: 1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gravert CE, Tiffany LH, Munkvold GP. 2000. Outbreak of Smut Caused by Tilletia maclaganii on Cultivated Switchgrass in Iowa. Plant Dis. 84: 596–596.

    Article  Google Scholar 

  • Grethlein HE. 1985. The Effect of Pore Size Distribution on the Rate of Enzymatic Hydrolysis of Cellulosic Substrates. Nature Biotechnol. 3: 155–160

    Article  CAS  Google Scholar 

  • Hansen J, Sato M. 2004. Greenhouse gas growth rates. Proc. Natl. Acad. Sci. 101: 16109–16114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob. Change Biol. 14: 2000–2014

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP. 2009. Seasonal nitrogen dynamics of Miscanthus×giganteus and Panicum virgatum. GCB Bioenergy 1: 297–307

    Article  CAS  Google Scholar 

  • Hernández P, Dorado G, Laurie DA, Martín A, Snape JW. 2001. Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor. Appl. Genet. 102: 616–622

    Article  Google Scholar 

  • Ho CW, Wu TH, Hsu TW, Huang JC, Huang CC, Chiang TY. 2011. Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae). Am. J. Bot. 98: e201–e203

    Article  Google Scholar 

  • Huang H-J, Ramaswamy S, Al-Dajani W, Tschirner U, Cairncross RA. 2009. Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass Bioenergy 33: 234–246

    Article  CAS  Google Scholar 

  • Jackson LS, Joyce TW, Heitmann JA, JA Giesbrecht JA. 1996. Enzyme activity recovery from secondary fiber treated with cellulase and xylanase. Journal of Biotechnology 45: 33–44

    Article  CAS  Google Scholar 

  • Jakob K, Zhou F, Paterson A. 2009. Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell.Dev.Biol.-Plant 45: 291–305

    Article  CAS  Google Scholar 

  • Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown J. 2011. Characterization of flowering time diversity in Miscanthus species. GCB Bioenergy 3: 387–400

    Article  Google Scholar 

  • Jensen E, Robson P, Norris J, Cookson A, Farrar K, Donnison I et al. 2013. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. J. Exp. Bot. 64: 541–552

    Article  CAS  Google Scholar 

  • Jensen E, Squance M, Hastings A, Jones S, Farrar K, Huang L et al. 2011. Understanding the value of hydrothermal time on flowering in Miscanthus species. Asp. Appl. Biol. 112: 181–189

    Google Scholar 

  • Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W et al. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genet. 45: 957–961

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Lee TH, Guo H, Chung SJ, Paterson AH, Kim DS et al. 2014. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships. BMC Plant Biol. 14: 134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim C, Tang H, Paterson AH. 2009. Duplication and divergence of grass genomes: Integrating the Cloridoids. Trop. Plant Biol. 2: 51–62

    Article  Google Scholar 

  • Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B et al. 2012. SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theor. Appl. Genet. 124: 1325–1338

    Article  CAS  Google Scholar 

  • Kim Y, Mosier NS, Ladisch MR, Pallapolu VR, Lee YY, Garlock R et al. 2011. Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Bioresour. technol. 102: 11089–11096

    Article  CAS  PubMed  Google Scholar 

  • Kissel DE, Sonon L. 2008. Fertilizer recommendations by crops, categorized. Soil Test Handbook for Georgia. University of Georgia, Agricultural and Environmental Services Laboratories, Athens, GA, USA

    Google Scholar 

  • Lambers H, Chapin FSI, Pons TL. 1998. Plant Physiological EcologySpringer, New York

    Google Scholar 

  • Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V. 2004. MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res. 32: D393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D, Yu AH, Saddler JN. 1995. Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol. Bioeng. 45: 328–336

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Brewbaker JL. 1984. Effects of Brown Midrib-3 on Yields and Yield Components of Maize. Crop Sci. 24: 105–108

    Article  Google Scholar 

  • Lee TH, Tang H, Wang X, Paterson AH. 2013. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res. 41: D1152–1158

    Article  CAS  PubMed  Google Scholar 

  • Li G, Serba DD, Saha MC, Bouton JH, Lanzatella CL, Tobias CM. 2014. Genetic Linkage Mapping and Transmission Ratio Distortion in a Three-Generation Four-Founder Population of Panicum virgatum (L.). G3 4: 913–923

    CAS  PubMed Central  Google Scholar 

  • Li H, Peng Z, Yang X, Wang W, Fu J, Wang J et al. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genet. 45: 43–50

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wu Y, Wang Y, Samuels T. 2012. A high-density simple sequence repeat-based genetic linkage map of switchgrass. G3 2: 357–370

    CAS  Google Scholar 

  • Long AC. 1976. A large varietal difference in cane deterioration due to flowering. SASTA Proc. 50: 78–81

    Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD et al. 2013. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genetics 9: e1003215

    Article  CAS  Google Scholar 

  • Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H et al. 2008. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 148: 1772–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S et al. 2012. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS One 7: e33821

    Article  CAS  Google Scholar 

  • Manzoni S, Jackson R, Trofymow JA, Porporato A. 2008. The global stoichiometry of litter nitrogen mineralization. Science 321: 684–686

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S. 2000. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiology 123: 439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKendrick JD, Owensby CE, Hyde RM. 1975. Big bluestem and indiangrass vegetative reproduction and annual reserve carbohydrate and nitrogen cycles. Agro-Ecosystems 2: 75–93

    Article  Google Scholar 

  • McLaughlin SB, Kszos LA. 2005. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28: 515–535

    Article  Google Scholar 

  • McLaughlin SB, Kiniry JR, Taliaferro CM, Ugarte DD. 2006. Projecting Yield and Utilization Potential of Switchgrass as an Energy Crop. In: L. S. Donald, editor Adv. Agron. Academic Press. p. 267–297

    Google Scholar 

  • Mekete T, Gray ME, Niblack TL. 2009. Distribution, morphological description, and molecular characterization of Xiphinema and Longidorous spp. associated with plants (Miscanthus spp. and Panicum virgatum) used for biofuels. GCB Bioenergy 1: 257–266

    Article  CAS  Google Scholar 

  • Mekete T, Reynolds K, Lopez-Nicora HD, Gray ME, Niblack TL. 2010. Plant-Parasitic Nematodes Are Potential Pathogens of Miscanthus × giganteus and Panicum virgatum Used for Biofuels. Plant Dis. 95: 413–418

    Article  Google Scholar 

  • Miller JE, Geadelmann JL, Marten GC. 1983. Effect of the Brown Midrib-Allele on Maize Silage Quality and Yield. Crop Sci. 23: 493–496

    Article  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD et al. 2013. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. 110: 453–458

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM. 2010. Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185: 745–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M. 2004. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J. Biotechnol. 107: 65–72

    CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556

    Article  CAS  PubMed  Google Scholar 

  • Prasifka J, Bradshaw J, Boe A, Lee D, Adamski D, Gray M. 2010. Symptoms, Distribution and Abundance of the Stem-Boring Caterpillar, Blastobasis repartella (Dietz), in Switchgrass. Bioenerg. Res. 3: 238–242

    Article  Google Scholar 

  • Prasifka JR, Bradshaw JD, Gray ME. 2012. Potential Biomass Reductions to Miscanthus × giganteus by Stem-Boring Caterpillars. Environ. Entomol. 41: 865–871

    Article  Google Scholar 

  • Pusz W, Plaskowska E. 2010. Stagonospora tainanensis -new pathogen of giant miscanthus (Miscanthus x giganteus) in Poland. Phytopathologia 57: 39–43

    Google Scholar 

  • Ramos L, Saddler J. 1994. Enzyme recycling during fed-batch hydrolysis of cellulose derived from steam-exploded Eucalyptus viminalis. Appl. Biochem. Biotechnol. 45-46: 193–207

    Article  CAS  Google Scholar 

  • Rayburn AL, Crawford J, Rayburn CM, Juvik JA. 2009. Genome size of Three Miscanthus species. Plant Mol. Biol. Report. 27: 184–188

    Article  CAS  Google Scholar 

  • Richard TL. 2010. Challenges in scaling up biofuels infrastructure. Science 329: 793–796

    Article  CAS  PubMed  Google Scholar 

  • Runge CF, Senauer B. 2007. How biofuels could starve the poor. Foreign Affair 86: 41–53

    Google Scholar 

  • Saballos A. 2008. Development and utilization of sorghum as a bioenergy crop. In: W. Vermerris, editor Genetic Improvement of Bioenergy Crops. Springer, New York. p. 211–248

    Chapter  Google Scholar 

  • Sanderson MA, Egg RP, Wiselogel AE. 1997. Biomass losses during harvest and storage of switchgrass. Biomass Bioenergy 12: 107–114

    Article  Google Scholar 

  • Scauflaire J, Gourgue M, Foucart G, Renard F, Vandeputte F, Munaut F. 2013. Fusarium miscanthi and other Fusarium species as causal agents of Miscanthus × giganteus rhizome rot. Eur. J. Plant Pathol. 137: 1–3

    Article  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J et al. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319: 1238–1240

    CAS  PubMed  Google Scholar 

  • Selvi A, Nair NV, Balasundaram N, Mohapatra T. 2003. Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46: 394–403

    Article  CAS  PubMed  Google Scholar 

  • Serba D, Daverdin G, Bouton J, Devos K, Brummer EC, Saha M. 2015. Quantitative Trait Loci (QTL) Underlying Biomass Yield and Plant Height in Switchgrass. Bioenerg. Res. 2015, 8: 307–324

    Article  Google Scholar 

  • Serba D, Wu L, Daverdin G, Bahri B, Wang X, Kilian A et al. 2013. Linkage Maps of Lowland and Upland Tetraploid Switchgrass Ecotypes. Bioenerg. Res. 6: 953–965

    Article  Google Scholar 

  • Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DG et al. 2012. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol. 193: 121–136

    Article  CAS  PubMed  Google Scholar 

  • Shinners KJ, Binversie BN. 2007. Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt. Biomass Bioenergy 31: 576–584

    Article  Google Scholar 

  • Si S, Chen Y, Fan C, Hu H, Li Y, Huang J et al. 2015. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour. Technol. 183: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Sill WH. 1957. Panicum mosaic, a new virus disease of Panicum virgatum and related grasses. Phytopathol. 47: 31

    Google Scholar 

  • Slavov G, Robson P, Jensen E, Hodgson E, Farrar K, Allison G et al. 2013. Contrasting geographic patterns of genetic variation for molecular markers vs. phenotypic traits in the energy grass Miscanthus sinensis. GCB Bioenergy 5: 562–571

    Google Scholar 

  • Somleva MN, Tomaszewski Z, Conger BV. 2002. Agrobacteriummediated genetic transformation of switchgrass. Crop Sci. 42: 2080–2087

    Article  CAS  Google Scholar 

  • Stich B, Melchinger AE. 2010. An introduction to association mapping in plants. CAB Rev. 5: 1–9

    Article  Google Scholar 

  • Muthamilarasan M, Misra G, Prasad M. 2013. FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS One 8: e71418

    Article  CAS  Google Scholar 

  • Swaminathan K, Chae WB, x Mitros WB, x Varala WB, Xie L, Barling A et al. 2012. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics 13: 142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SH, Hulme SP, Rees M, Ripley BS, Woodward FI, Osborne CP. 2010. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185: 780–791

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S et al. 2011. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genet. 43: 159–162

    Article  CAS  PubMed  Google Scholar 

  • Tobias C, Twigg P, Hayden D, Voge K, Mitchell R, Lazo G et al. 2005. Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor. Appl. Genet. 111: 956–964

    Article  PubMed  Google Scholar 

  • Tu M, Chandra RP, Saddler JN. 2007. Evaluating the Distribution of Cellulases and the Recycling of Free Cellulases during the Hydrolysis of Lignocellulosic Substrates. Biotechnol. Prog. 23: 398–406

    Article  CAS  PubMed  Google Scholar 

  • Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y et al. 2012. Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 158: 590–600

    Article  PubMed  CAS  Google Scholar 

  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC. 2007. Molecular Breeding to Enhance Ethanol Production from Corn and Sorghum Stover. Crop Sci. 47: S-142-S-153

  • Vu AL, Dee MM, Zale J, Gwinn KD, Ownley BH. 2013. First Report of Leaf Spot caused by Bipolaris oryzae on Switchgrass in Tennessee. Plant Dis. 97: 1654–1654

    Article  Google Scholar 

  • Wang XUN, Yamada T, Kong F-J, Abe Y, Hoshino Y, Sato H et al. 2011. Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop. GCB Bioenergy 3: 322–332

    Article  CAS  Google Scholar 

  • Wang Y, Zeng X, Iyer NJ, Bryant DW, Mockler TC, Mahalingam R. 2012. Exploring the switchgrass transcriptome using secondgeneration sequencing technology. PLoS One 7: e34225

    Article  CAS  Google Scholar 

  • Wong KK, Deverell KF, Mackie KL, Clark TA, Donaldson LA. 1988. The relationship between fiber-porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol. Bioengineer. 31: 447–456

    Article  CAS  Google Scholar 

  • Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M et al. 2011. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour. Technol. 102: 4793–4799

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Zhang X, Gregg DJ, Saddler JN. 2004. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 115: 1115–1126

    Article  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. 2011. Deactivation of cellulases by phenols. EnzymeMicrob. Technol. 48: 54–60

    Article  CAS  Google Scholar 

  • Xu B, Sathitsuksanoh N, Tang Y, Udvardi MK, Zhang JY, Shen Z et al. 2012. Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS One 7: e47399

    Article  CAS  Google Scholar 

  • Yan J, Chen W, Luo F, Ma H, Meng A, Li X et al. 2012. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4: 49–60

    Article  Google Scholar 

  • Yan J, Zhu C, Liu W, Luo F, Mi J, Ren Y et al. 2015. High photosynthetic rate and water use efficiency of Miscanthus lutarioriparius characterize an energy crop in the semiarid temperate region. GCB Bioenergy 7: 207–218

    Article  CAS  Google Scholar 

  • Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H et al. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem. 72: 805–810

    Article  CAS  PubMed  Google Scholar 

  • Zale J, Freshour L, Agarwal S, Sorochan J, Ownley BH, Gwinn KD et al. 2008. First Report of Rust on Switchgrass (Panicum virgatum) Caused by Puccinia emaculata in Tennessee. Plant Dis. 92: 1710–1710

    Article  Google Scholar 

  • Zeiders KE 1984. Helminthosporium spot blotch of switchgrass in Pennsylvania. Plant Dis. 68: 120–122

    Article  Google Scholar 

  • Zhang D, Guo H, Kim C, Lee TH, Li J, Robertson J et al. 2013. CSGRqtl, a comparative quantitative trait locus database for Saccharinae grasses. Plant physiol. 161: 594–599

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S et al. 2012. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnol. 30: 549–554

    Article  CAS  Google Scholar 

  • Zhao H, Wang B, He J, Yang J, Pan L, Sun D et al. 2013. Genetic diversity and population structure of Miscanthus sinensis germplasm in China. PLoS One 8: e75672

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, Y.S., Kim, J. & Kim, C. Breeding of Lignocellulosic Bioethanol Feedstock. J. Crop Sci. Biotechnol. 21, 1–12 (2018). https://doi.org/10.1007/s12892-017-0175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0175-0

Key words

Navigation