Conservation Genetics Resources

, Volume 10, Issue 2, pp 191–193 | Cite as

Characterization of the complete plastid genome of Quercus tarokoensis

  • Yanci Yang
  • Tao Zhou
  • Juan Zhu
  • Jianhua Zhao
  • Guifang Zhao
Technical Note


Quercus tarokoensis is an endemic species to Taiwan, China. The complete plastid genome of Q. tarokoensis was assembled from Illumina pair-end sequence reads. The whole plastome was 161,355 bp in length and presented a quadripartite structure consisting of two copies of inverted repeat (IR) regions (25,860) separated by a large single copy region (90,602 bp) and a small single copy region (19,033 bp). The plastome of Q. tarokoensis encoded a total of 134 genes, including 86 protein-coding genes (79 PCG species), 40 tRNA genes (33 tRNA species), and 8 rRNA genes (4 rRNA species). The overall GC content of Q. tarokoensis plastome is 36.8%. A maximum likelihood phylogenetic analysis based on 33 complete plastomes revealed that Q. tarokoensis was collectively sister to a clade of (Quercus variabilis, (Quercus dolicholepis, Quercus baronii)) with high support.


Quercus tarokoensis Endemic species Plastid genome Phylogenetic relationship 



We are grateful to Ching-I Peng (Biodiversity Research Center, Academia Sinica), Chih-Kai Yang (National Taiwan University) for assistance collecting materials. This research was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1174) and the Key Laboratory Program Founded by the Education Department of Shaanxi Province (12JS083).


  1. Alexander, LW, Woeste KE (2014) Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management. Tree Genet Genomes 10:803–812CrossRefGoogle Scholar
  2. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WE, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159CrossRefPubMedPubMedCentralGoogle Scholar
  3. Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull 19:11–15Google Scholar
  4. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads: a baiting and iterative mapping approach. Nucl Acids Res 41:e129–e129CrossRefPubMedPubMedCentralGoogle Scholar
  5. Huang CJ, Zhang YT, Bartholomew B (1999) Fagaceae. In: Flora of China, vol 4. Science Press, Beijing, pp 370–380Google Scholar
  6. Jansen RK, Saski C, Lee SB, Hansen AK, Daniell H (2011) Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol 28:835–847CrossRefPubMedGoogle Scholar
  7. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  8. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW: a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucl Acids Res 41:575–581CrossRefGoogle Scholar
  9. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619CrossRefPubMedPubMedCentralGoogle Scholar
  10. Simeone MC, Grimm GW, Papini A, Vessella F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T (2016) Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4:e1897CrossRefPubMedPubMedCentralGoogle Scholar
  11. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  12. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  13. Vitelli M, Vessella F, Cardoni S, Pollegioni P, Denk T, Grimm GW, Simeone MC (2017) Phylogeographic structuring of plastome diversity in Mediterranean oaks (Quercus Group Ilex, Fagaceae). Tree Genet Genomes 13: 3CrossRefGoogle Scholar
  14. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Yanci Yang
    • 1
  • Tao Zhou
    • 1
  • Juan Zhu
    • 2
  • Jianhua Zhao
    • 1
  • Guifang Zhao
    • 1
  1. 1.Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life SciencesNorthwest UniversityXi’anChina
  2. 2.Middle School of Xi’an Electronic Science and TechnologyXi’anChina

Personalised recommendations