Electrochemical Characterization of Melamine Electropolymerized in Deep Eutectic Solvents for Selective Detection of Dopamine


We report here for the first time the polymerization of melamine in three different type III deep eutectic solvents (DESs), namely ethaline, glyceline and reline. The novel DESs functionalized polymelamine (PME-DESs) modified glassy carbon electrode was compared with conventional electrolytes including sulphuric acid and neutral Cl aqueous solution. The key effect of the potential window, the acidity of the electrolyte, concentration of melamine and Cl and the temperature of electrolyte on the polymerization of melamine have been further studied to choose the best PME-DESs. The selected PME(ethaline) was further incorporated with hydroxyl functionalized multi-walled carbon nanotube (f-WMCNTs) and applied in selective sensing of dopamine. PME(ethaline)/f-MWCNTs/GCE demonstrated excellent electrocatalytic activity towards dopamine oxidation. The observed linear range for the detection of dopamine concentration, without interferences through differential pulse voltammetry (DPV), was from 1.0 μM to 1.0 mM (R2 = 0.9924), with a detection limit of 288 nM (S/N = 3). Studies proved that the modified electrode can be successfully applied for the quantitative determination of dopamine both with and without interferences.

Graphical abstract

Electrochemical characterization of melamine electropolymerized in deep eutectic solvents for selective detection of dopamine

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    A. Van den Bossche, E. De Witte, W. Dehaen, K. Binnemans, Green Chem. 20, 3327–3338 (2018)

    Article  Google Scholar 

  2. 2.

    W. Chen, Z. Xue, J. Wang, J. Jiang, X. Zhao And T. Mu, Acta Phys.-Chim. Sin. 34, 904–911 (2018)

  3. 3.

    J. Kalhoff, G. Eshetu, D. Bresser, S. Passerini, Chemsuschem 8, 2154–2175 (2015)

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    A. Vacca, M. Mascia, L. Mais, S. Rizzardini, F. Delogu, S. Palmas, Electrocatalysis 5, 16–22 (2013)

    Article  CAS  Google Scholar 

  5. 5.

    Y. Ye, J. Rick, B. Hwang, J. Mater. Chem. A 1, 2719–2743 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    S. Riaño, M. Petranikova, B. Onghena, T. Vander Hoogerstraete, D. Banerjee, M. Foreman, C. Ekberg and K. Binnemans, RSC Adv. 7, 32100–32113 (2017)

  7. 7.

    N. Li, Y. Wang, K. Xu, Y. Huang, Q. Wen, X. Ding, Talanta 152, 23–32 (2016)

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    B. Ozturk, C. Parkinson, M. Gonzalez-Miquel, Separation And Purification Technology 206, 1–13 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    N. Fu, L. Li, K. Liu, C. Kim, J. Li, T. Zhu, J. Li, B. Tang, Talanta 197, 567–577 (2019)

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    P. Xu, G. Zheng, M. Zong, N. Li, W. Lou, Bioresources And Bioprocessing 4, 34 (2017)

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    S. Ramesh, R. Shanti, E. Morris, Carbohyd. Polym. 87, 701–706 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    D. Di Marino, D. Stöckmann, S. Kriescher, S. Stiefel, M. Wessling, Green Chem. 18, 6021–6028 (2016)

    Article  CAS  Google Scholar 

  13. 13.

    J. Malaquias, M. Steichen, P. Dale, Electrochim. Acta 151, 150–156 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Qian, C. Ma, S. Zhang, J. Gao, M. Liu, K. Xie, S. Wang, K. Sun, H. Song, Sensors And Actuators B: Chemical 255, 1655–1662 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    A. Hillman, K. Ryder, V. Ferreira, C. Zaleski, E. Vieil, Electrochim. Acta 110, 418–427 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    S. Ruggeri, F. Poletti, C. Zanardi, L. Pigani, B. Zanfrognini, E. Corsi, N. Dossi, M. Salomäki, H. Kivelä, J. Lukkari, F. Terzi, Electrochim. Acta 295, 124–129 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    S. García-Argüelles, C. García, M. Serrano, M. Gutiérrez, M. Ferrer, F. del Monte, Green Chem. 17, 3632–3643 (2015)

    Article  CAS  Google Scholar 

  18. 18.

    P. Maximiano, P. Mendonça, M. Santos, J. Costa, T. Guliashvili, A. Serra, J. Coelho, J. Polym. Sci., Part A: Polym. Chem. 55, 371–381 (2016)

    Article  CAS  Google Scholar 

  19. 19.

    O. Hosu, M. Bârsan, C. Cristea, R. Săndulescu, C. Brett, Electrochim. Acta 232, 285–295 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    Z. Shahamat, F. Nemati, A. Elhampour, Mol. Diversity 24, 691–706 (2020)

    CAS  Article  Google Scholar 

  21. 21.

    P. Gupta, S. Yadav, R. Goyal, J. Electrochem. Soc. 162, 86–92 (2014)

    Article  CAS  Google Scholar 

  22. 22.

    T.W. Chen, S. Palanisamy, S. Chen, V. Velusamy, S.K. Ramaraj, Int. J. Electrochem. Sci. 12, 8021–8032 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    S. Palanisamy, S. Ramaraj, S. Chen, V. Velusamy, T. Yang, T. Chen, Microchim. Acta 184, 1051–1057 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    S. Kesavan, D. Kumar, Y. Lee, J. Shim, Sensors And Actuators B: Chemical 241, 455–465 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    P. Gupta, R. Goyal, Talanta 120, 17–22 (2014)

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    S. Richardson-Burns, J. Hendricks, D. Martin, J. Neural Eng. 4, 6–13 (2007)

    Article  Google Scholar 

  27. 27.

    Y. Long, M. Li, C. Gu, M. Wan, J. Duvail, Z. Liu, Z. Fan, Prog. Polym. Sci. 36, 1415–1442 (2011)

    CAS  Article  Google Scholar 

  28. 28.

    R. Cools, The Neuroscientist 14, 381–395 (2008)

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    W. Gao, L. Qi, Z. Liu, S. Majeed, S. Kitte, G. Xu, Sensors And Actuators B: Chemical 238, 468–472 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    X. Yan, H. Li, T. Hu, X. Su, Biosens. Bioelectron. 91, 232–237 (2017)

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    M. Vázquez-González, W. Liao, R. Cazelles, S. Wang, X. Yu, V. Gutkin, I. Willner, ACS Nano 11, 3247–3253 (2017)

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    S. Chen, S. Liu, A. Wen, J. Zhang, H. Nie, J. Chen, R. Zeng, Y. Long, Y. Jin, R. Mai, Electrochim. Acta 271, 312–318 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    Y. Chang, P. Woi, Y. Alias, Microchem. J. 148, 322–330 (2019)

    CAS  Article  Google Scholar 

  34. 34.

    H. Bi, Y. Li, S. Liu, P. Guo, Z. Wei, C. Lv, J. Zhang, X. Zhao, Sensors And Actuators B: Chemical 171–172, 1132–1140 (2012)

    Article  CAS  Google Scholar 

  35. 35.

    M. Boyd, S. Klein, D. Reindl, B. Dougherty, J. Sol.Energy Eng. 133, 201005 (2011)

    Article  CAS  Google Scholar 

  36. 36.

    F. Ciucci, Current Opinion in Electrochemistry 13, 132–139 (2019)

    CAS  Article  Google Scholar 

  37. 37.

    M. Emran, M. Shenashen, A. Abdelwahab, M. Abdelmottaleb, M. Khairy, S. El-Safty, Electrocatalysis 9, 514–525 (2018)

    CAS  Article  Google Scholar 

  38. 38.

    M. Raj, R. Goyal, Sensors And Actuators B: Chemical 250, 552–562 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    L. Chen, E. Tanner, C. Lin, R. Compton, Chemical Science 9, 152–159 (2018)

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    A. Farahi, H. Hammani, A. Kajai, S. Lahrich, M. Bakasse, M. El Mhammedi, Int. J. Environ. Anal. Chem. 100, 295–310 (2019)

    Article  CAS  Google Scholar 

  41. 41.

    R.T. Hartshorn, M.C. Lim, A.G. Sykes, Inorg. Chem. 27, 4603–4606 (1988)

    CAS  Article  Google Scholar 

  42. 42.

    J.F. Guan, J. Zou, Y.P. Liu, X.Y. Jiang, J.G. Yu, Ecotoxicology Environmental Safety 201, 110872 (2020)

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    K. Reddaiah, T.M. Reddy, D.V. Ramana, Y.S. Rao, Materials Science And Engineering: C 62, 506–517 (2016)

  44. 44.

    X. Wang, K. Zheng, X. Feng, C. Xu, W. Song, Sensors And Actuators B: Chemical 219, 361–369 (2015)

    CAS  Article  Google Scholar 

  45. 45.

    H. Li, X. Wang, Z. Yu, J. Solid State Electrochem. 18, 105–113 (2013)

    Article  CAS  Google Scholar 

Download references


This work is financially supported by Impact Oriented Interdisciplinary Research Grant IIRG013B-2019 and RU Grant ST022-2020 by the Universiti Malaya.

Author information



Corresponding author

Correspondence to Pei Meng Woi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13384 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, Y.H., Woi, P.M. & Alias, Y.B. Electrochemical Characterization of Melamine Electropolymerized in Deep Eutectic Solvents for Selective Detection of Dopamine. Electrocatalysis (2021). https://doi.org/10.1007/s12678-021-00648-9

Download citation


  • Deep eutectic solvent
  • New ionic solvent
  • Polymelamine
  • Electropolymerization
  • Ethaline