Characterization and Photo-Induced Electrocatalytic Evaluation for BiVO4 Films Obtained by the SILAR Process

Abstract

BiVO4 is an important semiconductor material that can be applied as a photoanode in several electrochemical systems, using the visible region of the electromagnetic spectrum as an excitation source to charge carrier generation. However, due to the unfavorable charge carrier recombination process, which is an intrinsic property of semiconductor materials, alternative conditions of synthesis and different electrode architecture are fundamental to improving their photoelectrocatalytic activity. In this paper, the construction of a photoanode using BiVO4 films with the monoclinic crystalline structure was successfully obtained by a quick and low-cost process: the Successive Ionic Layer Adsorption and Reaction (SILAR). The characterization of electrodes (5, 10, and 15 SILAR-deposited layers), which was carried out by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), and UV-Vis spectroscopy diffuse reflectance techniques, showed the efficiency of the SILAR process in the construction and architecture of the FTO/BiVO4 electrode. The FTO/BiVO4 photoanodes constructed have exhibited interesting photoelectrochemical responses, such as high photocurrent density (jph), low resistance to charge transfer (Rct), and high charge carrier density (ND). The photocurrent value obtained for a 5-layer film was 1.95 mA cm−2, twice as large than a 10-layer film (0.97 mA cm−2) and three times greater than a 15-layer film (0.61 mA cm−2). The resistance-to-charge transfer values are in good agreement with the photocurrent density values, where the 5-layer film presented the Rct value of 0.15 kΩ, lower than the other obtained electrodes. Regarding the rhodamine b (RhB) photoelectrodegradation reaction, all electrodes showed good photoelectrocatalytic activity as evidenced by pseudo-first order kinetics constant (kobs) values.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Z. Zhou, Z. Wu, Q. Xu, G. Zhao, A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production. J. Mater. Chem. A 5(48), 25450–25459 (2017)

    CAS  Google Scholar 

  2. 2.

    L. Lu, X. Yue, F. Lin, F. Huang, B. Zhang, Z. Lin, Template-synthesized ultra-thin molecularly imprinted polymers membrane for the selective preconcentration of dyes. J. Mater. Chem. A 3(20), 10959–10968 (2015)

    CAS  Google Scholar 

  3. 3.

    R. Wang, X. Jin, Z. Wang, W. Gu, Z. Wei, Y. Huang, Z. Qiu, P. Jin, A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: a case study. Bioresour. Technol. 247, 1233–1241 (2018)

    CAS  PubMed  Google Scholar 

  4. 4.

    J. Sarasa, M. Roche, M. Ormad, E. Gimeno, A. Puig, J. Ovelleiro, Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Res. 32(9), 2721–2727 (1998)

    CAS  Google Scholar 

  5. 5.

    E. Kusmierek, Semiconductor electrode materials applied in photoelectrocatalytic wastewater treatment—an overview. Catalysts 10(4), 439 (2020)

    CAS  Google Scholar 

  6. 6.

    J. Ge, Y. Zhang, Y.-J. Heo, S.-J. Park, Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: a review. Catalysts 9(2), 122 (2019)

    Google Scholar 

  7. 7.

    U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 9(1), 1–12 (2008)

    CAS  Google Scholar 

  8. 8.

    C.V. Reddy, I.N. Reddy, K. Ravindranadh, K.R. Reddy, N.P. Shetti, D. Kim, J. Shim, T.M. Aminabhavi, Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J. Environ. Manage. 260, 110088 (2020)

    CAS  PubMed  Google Scholar 

  9. 9.

    U. Pratomo, I. Purnama, J.Y. Mulyana, Photo-induced water oxidation via cascade charge transfer on nanostructured BiVO4/TiO2 modified with dye and co-catalyst molecules. Inorganica Chim. Acta 500, 119223 (2020)

    CAS  Google Scholar 

  10. 10.

    D. Zhao, F.C. Dai, A.C. Li, Y. Chen, G.H. Li, Q. Wang, W.S. Hou, H.Z. Zhou, Photoelectrocatalytic properties and mechanism of rhodamine B degradation using a graphene oxide/Ag3PO4/Ni film electrode. New J. Chem. 44(22), 9502–9508 (2020)

    CAS  Google Scholar 

  11. 11.

    W. Nareejun, C. Ponchio, Novel photoelectrocatalytic/solar cell improvement for organic dye degradation based on simple dip coating WO3/BiVO4 photoanode electrode. Sol. Energy Mater. Sol. Cells 212, 110556 (2020)

    CAS  Google Scholar 

  12. 12.

    H. Qian, Q. Hou, E. Duan, J. Niu, Y. Nie, C. Bai, X. Bai, M. Ju, Honeycombed Au@C-TiO2-Xcatalysts for enhanced photocatalytic mineralization of Acid red 3R under visible light. J. Hazard. Mater. 391, 122246 (2020)

    CAS  PubMed  Google Scholar 

  13. 13.

    L. Liu, H. Ma, X. Zhang, G. Wang, C. Ma, Y. Fu, X. Dong, Fabrication of graphene oxide wrapped Ti/Co3O4 nanowire photoanode and its superior photoelectrocatalytic performance. Nanotechnology 31(22), 225303 (2020)

    CAS  PubMed  Google Scholar 

  14. 14.

    L.P. Camargo, A.C. Lucilha, G.A.B. Gomes, V.R. Liberatti, A.C. Andrello, P.R.C. da Silva, L.H. Dall’Antonia, Copper pyrovanadate electrodes prepared by combustion synthesis: evaluation of photoelectroactivity. J. Solid State Electrochem. 24(8), 1935–1950 (2020)

  15. 15.

    V.S. Leão-Neto, A.C. da Silva, L.P. Camargo, M.R. Da Silva Pelissari, P.R.C. da Silva, P.S. Parreira, M.G. Segatelli, L.H. Dall′Antonia, Fabrication of rGO/α-Fe2O3 electrodes: characterization and use in photoelectrocatalysis. J. Mater. Sci. Mater. Electron. 31(19), 16882–16897 (2020)

  16. 16.

    A.R. Lim, S.-Y. Jeong, Ferroelastic phase transition of BiVO4 single crystals with prominent W-domain walls by stress-strain hysteresis measurements. J. Intell. Mater. Syst. Struct. 21(9), 915–920 (2010)

    CAS  Google Scholar 

  17. 17.

    I. Vinke, J. Diepgrond, B. Boukamp, K. Devries, A. Burggraaf, Bulk and electrochemical properties of BiVO4. Solid State Ionics 57(1–2), 83–89 (1992)

    CAS  Google Scholar 

  18. 18.

    A. Tücks, H.P. Beck, The photochromic effect of bismuth vanadate pigments: investigations on the photochromic mechanism. Dye. Pigment. 72(2), 163–177 (2007)

    Google Scholar 

  19. 19.

    L.S. Kumari, P.P. Rao, A.N.P. Radhakrishnan, V. James, S. Sameera, P. Koshy, Brilliant yellow color and enhanced NIR reflectance of monoclinic BiVO4 through distortion in VO43− tetrahedra. Sol. Energy Mater. Sol. Cells 112, 134–143 (2013)

    CAS  Google Scholar 

  20. 20.

    M.F.R. Samsudin, S. Sufian, B.H. Hameed, Epigrammatic progress and perspective on the photocatalytic properties of BiVO4-based photocatalyst in photocatalytic water treatment technology: a review. J. Mol. Liq. 268, 438–459 (2018)

    CAS  Google Scholar 

  21. 21.

    Y. Lin, C. Lu, C. Wei, Microstructure and photocatalytic performance of BiVO4 prepared by hydrothermal method. J. Alloys Compd. 781, 56–63 (2019)

    CAS  Google Scholar 

  22. 22.

    M. Sun, P. Guo, M. Wang, F. Ren, The effect of pH on the photocatalytic performance of BiVO4 for phenol mine sewage degradation under visible light. Optik (Stuttg). 179, 672–679 (2019)

    CAS  Google Scholar 

  23. 23.

    A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Letters 54(3–4), 229–230 (1998)

    Google Scholar 

  24. 24.

    Q. Jia, K. Iwashina, A. Kudo, Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc. Natl. Acad. Sci. 109(29), 11564–11569 (2012)

    CAS  PubMed  Google Scholar 

  25. 25.

    M. Tayebi, B.-K. Lee, Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sustain. Energy Rev. 111, 332–343 (2019)

    CAS  Google Scholar 

  26. 26.

    S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 13(12), 4624–4628 (2001)

    CAS  Google Scholar 

  27. 27.

    A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121(49), 11459–11467 (1999)

    CAS  Google Scholar 

  28. 28.

    A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassim, S.-H. Wei, Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem. Mater. 21(3), 547–551 (2009)

    CAS  Google Scholar 

  29. 29.

    M.R. da Silva, L.V.A. Scalvi, V.S.L. Neto, L.H. Dall’Antonia, Dip-coating deposition of resistive BiVO4 thin film and evaluation of their photoelectrochemical parameters under distinct sources illumination. J. Solid State Electrochem. 20(6), 1527–1538 (2016)

  30. 30.

    C.R. Dhas, D. Arivukarasan, R. Venkatesh, A.J. Josephine, K.C.M.G. Malar, S.E.S. Monica, B. Subramanian, Influence of precursor aging time period on physical and photocatalytic properties of nebulizer spray coated BiVO4 thin films. Solid State Sci. 92, 36–45 (2019)

    CAS  Google Scholar 

  31. 31.

    M. Wang, Y. Che, C. Niu, M. Dang, D. Dong, Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol–gel method for photodegradion of methyl orange. J. Hazard. Mater. 262, 447–455 (2013)

    CAS  PubMed  Google Scholar 

  32. 32.

    L. Chen, E. Alarcón-Lladó, M. Hettick, I.D. Sharp, Y. Lin, A. Javey, J.W. Ager, Reactive sputtering of bismuth vanadate photoanodes for solar water splitting. J. Phys. Chem. C 117(42), 21635–21642 (2013)

    CAS  Google Scholar 

  33. 33.

    D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed. (Elsevier, 2010)

  34. 34.

    L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A Chem. 252(1–2), 120–124 (2006)

    CAS  Google Scholar 

  35. 35.

    J. Yu, Y. Zhang, A. Kudo, Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process. J. Solid State Chem. 182(2), 223–228 (2009)

    CAS  Google Scholar 

  36. 36.

    H.K. Timmaji, W. Chanmanee, N.R. de Tacconi, K. Rajeshwar, Solution combustion synthesis of BiVO4 nanoparticles: effect of combustion precursors on the photocatalytic activity. J. Adv. Oxid. Technol. 14(1), 95–105 (2011)

    Google Scholar 

  37. 37.

    W. Guo, D. Tang, O. Mabayoje, B.R. Wygant, P. Xiao, Y. Zhang, C.B. Mullins, A simplified successive ionic layer adsorption and reaction (s-SILAR) method for growth of porous BiVO4 thin films for photoelectrochemical water oxidation. J. Electrochem. Soc. 164(2), H119–H125 (2017)

    CAS  Google Scholar 

  38. 38.

    W.D. Chemelewski, O. Mabayoje, C.B. Mullins, SILAR growth of Ag3VO4 and characterization for photoelectrochemical water oxidation. J. Phys. Chem. C 119(48), 26803–26808 (2015)

    CAS  Google Scholar 

  39. 39.

    J. Feng, L. Cheng, J. Zhang, O.K. Okoth, F. Chen, Preparation of BiVO4/ZnO composite film with enhanced visible-light photoelectrocatalytic activity. Ceram. Int. 44(4), 3672–3677 (2018)

    CAS  Google Scholar 

  40. 40.

    W. Zhou, T. Jiang, Y. Zhao, C. Xu, C. Pei, H. Xue, Ultrathin Ti/TiO2/BiVO4 nanosheet heterojunction arrays for photoelectrochemical water oxidation. J. Alloys Compd. 777, 1152–1158 (2019)

    CAS  Google Scholar 

  41. 41.

    H. Du, W. Pu, Y. Wang, K. Yan, J. Feng, J. Zhang, C. Yang, J. Gong, Synthesis of BiVO4/WO3 composite film for highly efficient visible light induced photoelectrocatalytic oxidation of norfloxacin. J. Alloys Compd. 787, 284–294 (2019)

    CAS  Google Scholar 

  42. 42.

    P. Scherrer, in Kolloidchem. Ein Lehrb. (Springer Berlin Heidelberg, Berlin, Heidelberg, 1912), pp. 387–409

  43. 43.

    A.L. Patterson, The Scherrer formula for x-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939)

    CAS  Google Scholar 

  44. 44.

    H. Zhang, C. Cheng, Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance. ACS Energy Lett. 2(4), 813–821 (2017)

    CAS  Google Scholar 

  45. 45.

    S.R.M. Thalluri, C. Martinez-Suarez, A. Virga, N. Russo, G. Saracco, Insights from crystal size and band gap on the catalytic activity of monoclinic BiVO4. Int. J. Chem. Eng. Appl. 4(5), 305–309 (2013)

    CAS  Google Scholar 

  46. 46.

    S. Nikam, S. Joshi, Irreversible phase transition in BiVO4 nanostructures synthesized by a polyol method and enhancement in photo degradation of methylene blue. RSC Adv. 6(109), 107463–107474 (2016)

    CAS  Google Scholar 

  47. 47.

    O.F. Lopes, K.T.G. Carvalho, G.K. Macedo, V.R. de Mendonça, W. Avansi, C. Ribeiro, Synthesis of BiVO4 via oxidant peroxo-method: insights into the photocatalytic performance and degradation mechanism of pollutants. New J. Chem. 39(8), 6231–6237 (2015)

    CAS  Google Scholar 

  48. 48.

    P. Brack, J.S. Sagu, T.A.N. Peiris, A. McInnes, M. Senili, K.G.U. Wijayantha, F. Marken, E. Selli, Aerosol-assisted CVD of bismuth vanadate thin films and their photoelectrochemical properties. Chem. Vap. Depos. 21(1–2–3), 41–45 (2015)

  49. 49.

    F.W.P. Ribeiro, M.F. Gromboni, F. Marken, L.H. Mascaro, Photoelectrocatalytic properties of BiVO4 prepared with different alcohol solvents. Int. J. Hydrogen Energy 41(39), 17380–17389 (2016)

    CAS  Google Scholar 

  50. 50.

    F.D. Hardcastle, I.E. Wachs, Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J. Phys. Chem. 95(13), 5031–5041 (1991)

    CAS  Google Scholar 

  51. 51.

    I.D. Brown, K.K. Wu, Empirical parameters for calculating cation–oxygen bond valences. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 32(7), 1957–1959 (1976)

  52. 52.

    D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5(8), 3144–3151 (1972)

    Google Scholar 

  53. 53.

    P. Hajra, S. Kundu, A. Maity, C. Bhattacharya, Facile photoelectrochemical water oxidation on Co2+-adsorbed BiVO4 thin films synthesized from aqueous solutions. Chem. Eng. J. 374, 1221–1230 (2019)

    CAS  Google Scholar 

  54. 54.

    N. Srinivasan, M. Anbuchezhiyan, S. Harish, S. Ponnusamy, Hydrothermal synthesis of C doped ZnO nanoparticles coupled with BiVO4 and their photocatalytic performance under the visible light irradiation. Appl. Surf. Sci. 494, 771–782 (2019)

    CAS  Google Scholar 

  55. 55.

    A. Polo, I. Grigioni, M.V. Dozzi, E. Selli, Sensitizing effects of BiVO4 and visible light induced production of highly reductive electrons in the TiO2/BiVO4 heterojunction. Catal. Today 340, 19–25 (2020)

    CAS  Google Scholar 

  56. 56.

    A. Baccaro, I. Gutz, Fotoeletrocatálise em semicondutores: dos princípios básicos até sua conformação à nanoescala. Quim. Nova 41(3), 326–339 (2017)

    Google Scholar 

  57. 57.

    M.R. da Silva Pelissari, L.V.A. Scalvi, V.S.L. Neto, L.H. Dall’Antonia, Evaluation of the heterostructure ITO/BiVO4 under blue monochromatic light irradiation for photoelectrochemical application. J. Mater. Sci. Mater. Electron. 31(4), 2833–2844 (2020)

  58. 58.

    M.R. da Silva, A.C. Lucilha, R. Afonso, L.H. Dall’Antonia, L.V. de Andrade Scalvi, Photoelectrochemical properties of FTO/m-BiVO4 electrode in different electrolytes solutions under visible light irradiation. Ionics (Kiel). 20(1), 105–113 (2014)

  59. 59.

    D.-D. Lv, J.-F. Liu, Z. Zhang, Y.-Y. Ma, Y. Liang, Z.-T. Zhou, W.-C. Hao, Photoelectrochemical properties of BiVO4 thin films with NaOH chemical treatment. Rare Met. 38(5), 446–452 (2019)

    CAS  Google Scholar 

  60. 60.

    J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011)

    CAS  PubMed  Google Scholar 

  61. 61.

    D. Hongxing, L. Qiuping, H. Yuehui, Preparation of nanoporous BiVO4/TiO2/Ti film through electrodeposition for photoelectrochemical water splitting. R. Soc. Open Sci. 5(9), 180728 (2018)

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    W.S. dos Santos, L.D. Almeida, A.S. Afonso, M. Rodriguez, J.P. Mesquita, D.S. Monteiro, L.C.A. Oliveira, J.D. Fabris, M.C. Pereira, Photoelectrochemical water oxidation over fibrous and sponge-like BiVO4/β-Bi4V2O11 photoanodes fabricated by spray pyrolysis. Appl. Catal. B Environ. 182, 247–256 (2016)

    Google Scholar 

  63. 63.

    B.O. Orimolade, B.A. Koiki, G.M. Peleyeju, O.A. Arotiba, Visible light driven photoelectrocatalysis on a FTO/BiVO4/BiOI anode for water treatment involving emerging pharmaceutical pollutants. Electrochim. Acta 307, 285–292 (2019)

    CAS  Google Scholar 

  64. 64.

    S. Bai, J. Liu, M. Cui, R. Luo, J. He, A. Chen, Two-step electrodeposition to fabricate the p–n heterojunction of a Cu2O/BiVO4 photoanode for the enhancement of photoelectrochemical water splitting. Dalt. Trans. 47(19), 6763–6771 (2018)

    CAS  Google Scholar 

  65. 65.

    T. Soltani, B.-K. Lee, Ag-doped BiVO4/BiFeO3 photoanode for highly efficient and stable photocatalytic and photoelectrochemical water splitting. Sci. Total Environ. 736, 138640 (2020)

    CAS  PubMed  Google Scholar 

  66. 66.

    S. Bai, J. Han, K. Zhang, J. Sun, J. Guo, R. Luo, D. Li, A. Chen, Triadic layered double hydroxide modified semiconductor heterojunction for PEC water splitting. ACS Sustain. Chem. Eng. 8(10), 4076–4084 (2020)

    CAS  Google Scholar 

  67. 67.

    E.P. Randviir, C.E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 5(5), 1098 (2013)

    CAS  Google Scholar 

  68. 68.

    E. Zarei, R. Ojani, Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J. Solid State Electrochem. 21(2), 305–336 (2017)

    CAS  Google Scholar 

  69. 69.

    R. Guo, A. Yan, J. Xu, B. Xu, T. Li, X. Liu, T. Yi, S. Luo, Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: a discussion on photocatalysis mechanism. J. Alloys Compd. 817, 153246 (2020)

    CAS  Google Scholar 

  70. 70.

    A.J. Josephine, C.R. Dhas, R. Venkatesh, D. Arivukarasan, A.J. Christy, S.E.S. Monica, S. Keerthana, Effect of pH on visible-light-driven photocatalytic degradation of facile synthesized bismuth vanadate nanoparticles. Mater. Res. Express 7(1), 015036 (2020)

    CAS  Google Scholar 

  71. 71.

    B.O. Orimolade, B.A. Koiki, B.N. Zwane, G.M. Peleyeju, N. Mabuba, O.A. Arotiba, Interrogating solar photoelectrocatalysis on an exfoliated graphite–BiVO4/ZnO composite electrode towards water treatment. RSC Adv. 9(29), 16586–16595 (2019)

    CAS  Google Scholar 

  72. 72.

    S. Han, W. Qu, J. Xu, D. Wu, Z. Shi, Z. Wen, Y. Tian, X. Li, Chemical bath deposition of well-aligned ZnO nanorod arrays on Ag rods for photoelectrocatalytic degradation of rhodamine B. Phys. Status Solidi A 214(9), 1700059 (2017)

    Google Scholar 

  73. 73.

    F. Hashemzadeh, R. Rahimi, A. Gaffarinejad, Photocatalytic degradation of methylene blue and rhodamine b dyes by niobium oxide nanoparticles synthesized via hydrothermal method. Int. J. Appl. Chem. Sci. Res. 1, 95–102 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors thank LMEM-UEL, LARXUEL, and LABSPEC-UEL for the SEM, XRD, and Raman analyses. The two anonymous reviewers are also thanked for constructive criticism of an earlier manuscript version.

Funding

The authors were financially supported by CNPq (Process 406459/2016-9), Fundação Araucária (PROT. 38.647 SIT.22391), and INCT in Bioanalytics (FAPESP grant no. 2014/50867-3 and CNPq grant no. 465389/2014-7).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Dall’Antonia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20150 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelissari, M.R.d., Azevedo Neto, N.F., Camargo, L.P. et al. Characterization and Photo-Induced Electrocatalytic Evaluation for BiVO4 Films Obtained by the SILAR Process. Electrocatalysis 12, 211–224 (2021). https://doi.org/10.1007/s12678-021-00641-2

Download citation

Keywords

  • BiVO4
  • Semiconductor
  • SILAR process
  • Discoloration
  • Photoelectrocatalytic activity
  • Rhodamine b