Skip to main content
Log in

Synthesis and Characterization of AgPd Bimetallic Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 08 February 2021

This article has been updated

Abstract

The synthesis of AgPd bimetallic nanoparticles was carried out by a simple polyol method in order to obtain an improved control of the morphology and the particle size. The nanoparticles were characterized using aberration-corrected scanning/transmission electron microscopy (STEM). Also, parallel beam X-ray diffraction analysis was carried out to evaluate the crystallographic structure. High-angle annular dark field (HAADF)-STEM images of the AgPd bimetallic nanoparticles were obtained. The contrast of the images shows that the nanoparticles have an alloy structure with an average size of 10.17 nm and icosahedral morphology. Electrochemical characterization was carried out to analyze the catalytic behavior of the bimetallic nanoparticles. Ag2Pd1/C bimetallic nanoparticles showed a better catalytic activity towards oxygen reduction reaction than Ag/C at room temperature. Furthermore, simulations based on DFT method have been used to describe the crystalline structure of nanoparticles, revealing that the electronic structure is significantly affected by the elemental distribution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Change history

References

  1. M. Galbe, G. Zacchi, A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59(6), 618–628 (2002)

    Article  CAS  Google Scholar 

  2. M.A.F. Akhairi, S.K. Kamarudin, Catalysts in direct ethanol fuel cell (DEFC): an overview. Int. J. Hydrog. Energy 41(7), 4214–4228 (2016)

    Article  CAS  Google Scholar 

  3. A. Kirubakaran, S. Jain, R.K. Nema, A review on fuel cell technologies and power electronic interface. Renew. Sust. Energ. Rev. 13(9), 2430–2440 (2009)

    Article  CAS  Google Scholar 

  4. M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Review: direct ethanol fuel cells. Int. J. Hydrog. Energy 38(22), 9438–9453 (2013)

    Article  CAS  Google Scholar 

  5. L. An, T.S. Zhao, R. Chen, Q.X. Wu, A novel direct ethanol fuel cell with high power density. J. Power Sources 196(15), 6219–6222 (2011)

    Article  CAS  Google Scholar 

  6. C. Sealy, The problem with platinum. Mater. Today 11(12), 65–68 (2008)

    Article  CAS  Google Scholar 

  7. S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-j. Liu, A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5(5), 1808–1825 (2017)

    Article  CAS  Google Scholar 

  8. N.V. Long, Y. Yang, C. Minh Thi, N.V. Minh, Y. Cao, M. Nogami, The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy 2(5), 636–676 (2013)

    Article  Google Scholar 

  9. N. Toshima, T. Yonezawa, Bimetallic nanoparticles—novel materials for chemical and physical applications. New J. Chem. 22(11), 1179–1201 (1998)

    Article  CAS  Google Scholar 

  10. C. Bianchini, P.K. Shen, Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109(9), 4183–4206 (2009)

    Article  CAS  Google Scholar 

  11. E. J. E. Antolini and E. Science, 2, 915 (2009)

    Google Scholar 

  12. C. Zhang, X. Shen, Y. Pan, Z. Peng, A review of Pt-based electrocatalysts for oxygen reduction reaction. Front. Energy 11(3), 268–285 (2017)

    Article  Google Scholar 

  13. S. Polani, N. Kanovsky, D. Zitoun, Leveraging commercial silver inks as oxidation reduction reaction catalysts in alkaline medium. ACS Appl. Nano Mater. 1(7), 3075–3079 (2018)

    Article  CAS  Google Scholar 

  14. H. Meng, P.K.J.E.C. Shen, Electrochem. Commun. 8(588) (2006)

  15. L. Jiang, A. Hsu, D. Chu, R. Chen, Size-dependent activity of palladium nanoparticles for oxygen electroreduction in alkaline solutions. J. Electrochem. Soc. 156(5), B643 (2009)

    Article  CAS  Google Scholar 

  16. N. Alexeyeva, A. Sarapuu, K. Tammeveski, F. Vidal-Iglesias, J. Solla-Gullón, J.M. Feliu, Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd–M nanoalloys in acid and alkaline solutions. Electrochim. Acta 56(19), 6702–6708 (2011)

    Article  CAS  Google Scholar 

  17. Y.-Y. Feng, Z.-H. Liu, W.-Q. Kong, Q.-Y. Yin, L.-X. Du, Promotion of palladium catalysis by silver for ethanol electro-oxidation in alkaline electrolyte. Inter. J. Hydrogen Energy 39(6), 2497–2504 (2014)

    Article  CAS  Google Scholar 

  18. X. Qiu, X. Yan, K. Cen, H. Zhang, G. Gao, L. Wu, D. Sun, Y. Tang, One-pot synthesis of Ag-rich AgPd alloy nanoactiniae and their enhanced electrocatalytic activity toward oxygen reduction. J. Energy Chem. 28, 111–117 (2019)

    Article  Google Scholar 

  19. X. Sun, Q. Qiang, Z. Yin, Z. Wang, Y. Ma, C. Zhao, Monodispersed silver-palladium nanoparticles for ethanol oxidation reaction achieved by controllable electrochemical synthesis from ionic liquid microemulsions. J. Colloid Interface Sci. 557, 450–457 (2019)

    Article  CAS  Google Scholar 

  20. M. Lázaro, L. Calvillo, V. Celorrio, J. Pardo, S. Perathoner, and R. Moliner, Carbon black: production, properties and uses, 41 (2011)

  21. A. Santoveña, C. Rodriguez-Proenza, J. Maya-Cornejo, A. Ruiz-Baltazar, D. Bahena, J. Ledesma, R. Pérez, R. Esparza, Characterization microstructural and electrochemical of AgPd alloy bimetallic nanoparticles. MRS Advances 2(50), 2857–2863 (2017)

    Article  Google Scholar 

  22. S.-C. Tsen, P. Crozier, J. Liu, Lattice measurement and alloy compositions in metal and bimetallic nanoparticles. Ultramicroscopy 98(1), 63–72 (2003)

    Article  CAS  Google Scholar 

  23. K. Jacob, S. Raj, L. Rannesh, Vegard’s law: a fundamental relation or an approximation? Inter. J. Materials Research 98(9), 776–779 (2007)

    Article  CAS  Google Scholar 

  24. M. Vargas-Ordaz, I. Velázquez-Hernández, J.A. Bañuelos, J. Ledesma-García, L. Álvarez-Contreras, N. Arjona, M. Guerra-Balcázar, Synthesis of PtAg bimetallic material as a multi-fuel tolerant electrocatalyst and spectroelectrochemical analysis of its capability to perform the oxygen reduction. Mater. Today Energy 14, 100335 (2019)

    Article  Google Scholar 

  25. M. Varela, A.R. Lupini, K.V. Benthem, A.Y. Borisevich, M.F. Chisholm, N. Shibata, E. Abe, S.J. Pennycook, Annu. Rev. Mater. Res 35, 539 (2005)

    Article  CAS  Google Scholar 

  26. S.J. Pennycook, B. Rafferty, P.D. Nellist, Microsc. Microanal. 6, 343 (2002)

    Article  Google Scholar 

  27. M.A. Poletti Papi, F.R. Caetano, M.F. Bergamini, L.H. Marcolino-Junior, Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination. Mater. Sci. Eng. C 75, 88–94 (2017)

    Article  CAS  Google Scholar 

  28. C. Ponce-de-Leon, C. Low, G. Kear, F. Walsh, Strategies for the determination of the convective-diffusion limiting current from steady state linear sweep voltammetry. J. Appl. Electrochem. 37(11), 1261–1270 (2007)

    Article  CAS  Google Scholar 

  29. L. Demarconnay, C. Coutanceau, J.M. Léger, Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol. Electrochim. Acta 49(25), 4513–4521 (2004)

    Article  CAS  Google Scholar 

  30. J. Kim, A.J. Bard, Application of the Koutecký-Levich method to the analysis of steady state voltammograms with ultramicroelectrodes. Anal. Chem. 88(3), 1742–1747 (2016)

    Article  CAS  Google Scholar 

  31. D.A. Slanac, W.G. Hardin, K.P. Johnston, K.J. Stevenson, Atomic ensemble and electronic effects in Ag-Rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J. Am. Chem. Soc. 134(23), 9812–9819 (2012)

    Article  CAS  Google Scholar 

  32. A.L. Gould, A.J. Logsdail, C.R.A. Catlow, Influence of composition and chemical arrangement on the kinetic stability of 147-Atom Au–Ag bimetallic nanoclusters. J. Phys. Chem. C 119(41), 23685–23697 (2015)

    Article  CAS  Google Scholar 

  33. H.Y. Kim, H.G. Kim, J.H. Ryu, H.M. Lee, Preferential segregation of Pd atoms in the Ag-Pd bimetallic cluster: density functional theory and molecular dynamics simulation. Phys. Rev. B 75(21), 212105 (2007)

    Article  Google Scholar 

  34. A. Goldberg, I. Yarovsky, Density functional theory study of hydrogen adsorption onAl12cages. Phys. Rev. B 75(19), 195403 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge PAPIIT-DGAPA for financial support with grant No. IN113317. The authors would like to acknowledge to the Laboratorio Nacional de Caracterización de Materiales (LaNCaM) at the CFATA-UNAM.

Funding

PAPIIT-DGAPA Grant No. IN113317.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Esparza.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santoveña-Uribe, A., Maya-Cornejo, J., Bahena, D. et al. Synthesis and Characterization of AgPd Bimetallic Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrocatalysis 11, 536–545 (2020). https://doi.org/10.1007/s12678-020-00613-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00613-y

Keywords

Navigation