Fabrication of MEA from Biomass-Based Carbon Nanofibers Composited with Nickel-Cobalt Oxides as a New Electrocatalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells

A Correction to this article is available

This article has been updated


Biomass has some advantages including renewability, abundant resources, being eco-friendly, easy processing, and low cost; and it is an important step in designing electrocatalysts in fuel cells as clean energy sources. In this study, a biomass-based carbon nanofiber of Typha domingensis, as available biomass source, and nickel-cobalt oxides is synthesized. The physicochemical techniques including X-ray powder diffraction, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, Barrett-Joyner-Halenda, and Brunauer-Emmett-Teller as well as electrochemical techniques are used to evaluate the surface morphology, crystal structure, and electrochemical performance of composites. The biomass-derived composite is used as a new electrocatalyst for the oxygen reduction reaction and oxygen evaluation reaction. A membrane electrode assembly is prepared by employing of the produced composite for alkaline passive direct methanol fuel cell, which characterized by polarization, power density curves, methanol crossover test, and stability test for 8 h. Electrochemical results show that the composite is an appropriate electrode material for oxygen reduction reaction in passive direct methanol fuel cells.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history


  1. 1.

    T. Zhan, Y. Zhang, X. Liu, S. Lu, W. Hou, NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. J. Power Sources 333, 53–60 (2016)

    CAS  Google Scholar 

  2. 2.

    A. Sarapuu, L. Samolberg, K. Kreek, M. Koel, L. Matisen, K. Tammeveski, Cobalt- and iron-containing nitrogen-doped carbon aerogels as non-precious metal catalysts for electrochemical reduction of oxygen. J. Electroanal. Chem. 746, 9–17 (2015)

    CAS  Google Scholar 

  3. 3.

    S. Gao, X. Wei, H. Fan, L. Li, K. Geng, J. Wang, Nitrogen-doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction. Nano Energy 13, 518–526 (2015)

    CAS  Google Scholar 

  4. 4.

    V.B. Silva, A. Rouboa, In situ activation procedures applied to a DMFC: analysis and optimization study. Fuel 93, 677–683 (2012)

    CAS  Google Scholar 

  5. 5.

    M.J. Ahmed, S.K. Theydan, Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations. Chem. Eng. 211-212, 200–207 (2012)

    CAS  Google Scholar 

  6. 6.

    L. Zhu, J. Wu, Q. Zhang, X. Li, Y. Li, X. Cao, Chemical-free fabrication of N, P dual-doped honeycomb-like carbon as an efficient electrocatalyst for oxygen reduction. J. Colloid Interface Sci. 510, 32–38 (2018)

    CAS  PubMed  Google Scholar 

  7. 7.

    W. Yuan, A. Xie, P. Chen, F. Huang, S. Li, Y. Shen, Combustion reaction-derived nitrogen-doped porous carbon as an effective metal-free catalyst for the oxygen reduction reaction. Energy 152, 333–340 (2018)

    CAS  Google Scholar 

  8. 8.

    M.A. Molina-García, N.V. Rees, “Metal-free” electrocatalysis: quaternary-doped graphene and the alkaline oxygen reduction reaction. Appl. Catal. A Gen. 553, 107–116 (2018)

    Google Scholar 

  9. 9.

    M. Gao, X. Liu, M. Irfan, J. Shi, X. Wang, P. Zhang, Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. Int. J. Hydrog. Energy 43(3), 1805–1815 (2018)

    CAS  Google Scholar 

  10. 10.

    G.-H. An, Y.-G. Lee, H.-J. Ahn, Multi-active sites of iron carbide nanoparticles on nitrogen@cobalt-doped carbon for a highly efficient oxygen reduction reaction. J. Alloys Compd. 746, 177–184 (2018)

    CAS  Google Scholar 

  11. 11.

    L. Zhou, M. Shao, M. Wei, X. Duan, Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. J. Energy Chem. 26(6), 1094–1106 (2017)

    Google Scholar 

  12. 12.

    T. Zhan, X. Liu, S. Lu, W. Hou, Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Appl. Catal. B Environ. 205, 551–558 (2017)

    CAS  Google Scholar 

  13. 13.

    X. Jia, S. Gao, T. Liu, D. Li, P. Tang, Y. Feng, Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions. Electrochim. Acta 245, 59–68 (2017)

    CAS  Google Scholar 

  14. 14.

    Y. Wang, Z. Wang, X. Wu, X. Liu, M. Li, Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen. Electrochim. Acta 192, 196–204 (2016)

    CAS  Google Scholar 

  15. 15.

    L. Osmieri, L. Pezzolato, S. Specchia, Recent trends on the application of PGM-free catalysts at the cathode of anion exchange membrane fuel cells. Curr. Opinion Electrochem. 9, 240–256 (2018)

    CAS  Google Scholar 

  16. 16.

    J. Zhang, M. Lv, D. Liu, L. Du, Z. Liang, Nitrogen-doped carbon nanoflower with superior ORR performance in both alkaline and acidic electrolyte and enhanced durability. Int. J. Hydrog. Energy 43(9), 4311–4320 (2018)

    CAS  Google Scholar 

  17. 17.

    C.H.A. Tsang, D.Y.C. Leung, Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell. Solid State Sci. 75, 21–26 (2018)

    CAS  Google Scholar 

  18. 18.

    N. Alexeyeva, E. Shulga, V. Kisand, I. Kink, K. Tammeveski, Electroreduction of oxygen on nitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions. J. Electroanal. Chem. 648(2), 169–175 (2010)

    CAS  Google Scholar 

  19. 19.

    S. Wang, D. Yu, L. Dai, Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133(14), 5182–5185 (2011)

    CAS  PubMed  Google Scholar 

  20. 20.

    Q. Jia, N. Ramaswamy, U. Tylus, K. Strickland, J. Li, A. Serov, K. Artyushkova, P. Atanassov, J. Anibal, C. Gumeci, S.C. Barton, M.-T. Sougrati, F. Jaouen, B. Halevi, S. Mukerjee, Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy 29, 65–82 (2016)

    CAS  Google Scholar 

  21. 21.

    K. Tao, Y. Gong, Q. Zhou, J. Lin, Nickel sulfide wrapped by porous cobalt molybdate nanosheet arrays grown on Ni foam for oxygen evolution reaction and supercapacitor. Electrochim. Acta 286, 65–76 (2018)

    CAS  Google Scholar 

  22. 22.

    Y. Tang, Y. Li, W. Guo, J. Wang, X. Li, S. Chen, S. Mu, Y. Zhao, F. Gao, A highly ordered multi-layered hydrogenated TiO2-II phase nanowire array negative electrode for 2.4 v aqueous asymmetric supercapacitors with high energy density and long cycle life. J. Mater. Chem. 6(2), 623–632 (2018)

    CAS  Google Scholar 

  23. 23.

    J. Shen, X. Li, L. Wan, K. Liang, B.K. Tay, L. Kong, X. Yan, An asymmetric supercapacitor with both ultra-high gravimetric and volumetric energy density based on 3D Ni(OH)2/MnO2@Carbon nanotube and activated polyaniline-derived carbon. ACS Appl. Mater. Interfaces 9(1), 668–676 (2017)

    CAS  PubMed  Google Scholar 

  24. 24.

    Y. Sui, H. Hu, Y. Zhang, B. Tang, J. Qi, Y. Ren, F. Wei, Y. He, Q. Meng, Z. Sun, The effect of temperature on morphology and electrochemical properties of NiCo2S4 by hydrothermal synthesis. Funct. Mater. Lett. 11(3) (2018)

  25. 25.

    A.A. Voskanyan, K.-Y. Chan, Scalable synthesis of three-dimensional meso-macroporous NiO with uniform ultra-large randomly packed mesopores and high catalytic activity for soot oxidation. ACS Appl. Nano Mater. (2013)

  26. 26.

    G. Zhang, J. Yang, H. Wang, H. Chen, J. Yang, F. Pan, Co3O4−δ quantum dots as a highly efficient oxygen evolution reaction catalyst for water splitting. ACS Appl. Mater. Interfaces 9(19), 16159–16167 (2017)

    CAS  PubMed  Google Scholar 

  27. 27.

    L. Zhang, D.P. Wilkinson, Y. Liu, J. Zhang, Progress in nanostructured (Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction. Electrochim. Acta 262, 326–336 (2018)

    CAS  Google Scholar 

  28. 28.

    B. Xue, K. Li, S. Gu, J. Lu, Zeolitic imidazolate frameworks (ZIFs)-derived NixCo3−xO4/CNTs nanocomposites with enhanced electrochemical performance for supercapacitor. J. Colloid Interface Sci. 530, 233–242 (2018)

    CAS  PubMed  Google Scholar 

  29. 29.

    A.H.A. Monteverde Videla, P. Stelmachowski, G. Ercolino, S. Specchia, Benchmark comparison of Co3O4 spinel-structured oxides with different morphologies for oxygen evolution reaction under alkaline conditions. J. Appl. Electrochem. 47(3), 295–304 (2017)

    CAS  Google Scholar 

  30. 30.

    J. Wang, Y. Song, Z. Li, Q. Liu, J. Zhou, X. Jing, M. Zhang, Z. Jiang, In Situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuel 24(12), 6463–6467 (2010)

    CAS  Google Scholar 

  31. 31.

    J. Zhao, C. Li, Q. Zhang, J. Zhang, X. Wang, J. Sun, J. Wang, J. Xie, Z. Lin, Z. Li, W. Lu, C. Lu, Y. Yao, Hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays supported on graphene fibers as high-performance electrodes for flexible asymmetric supercapacitors. Nano Res. 11(4), 1775–1786 (2018)

    CAS  Google Scholar 

  32. 32.

    W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye, K. Zhu, G. Wang, D. Cao, J. Yan, Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. (2018)

  33. 33.

    D. Ham, J. Lee, Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2(4), 873 (2009)

    CAS  Google Scholar 

  34. 34.

    C. Wan, B.M. Leonard, Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chem. Mater. 27(12), 4281–4288 (2015)

    CAS  Google Scholar 

  35. 35.

    P. Vialat, C. Mousty, C. Taviot-Gueho, G. Renaudin, H. Martinez, J.-C. Dupin, E. Elkaim, F. Leroux, High-performing monometallic cobalt layered double hydroxide supercapacitor with defined local structure. Adv. Funct. 24(30), 4831–4842 (2014)

    CAS  Google Scholar 

  36. 36.

    S. Surendran, S. Shanmugapriya, S. Shanmugam, L. Vasylechko, R. Kalai Selvan, Interweaved nickel phosphide sponge as an electrode for flexible supercapattery and water splitting applications. ACS Appl Energy Mater 1(1), 78–92 (2018)

    CAS  Google Scholar 

  37. 37.

    Y. Zhao, H. Ma, S. Huang, X. Zhang, M. Xia, Y. Tang, Z.-F. Ma, Monolayer nickel cobalt hydroxyl carbonate for high performance all-solid-state asymmetric supercapacitors. ACS Appl. Mater. Interfaces 8(35), 22997–23005 (2016)

    CAS  PubMed  Google Scholar 

  38. 38.

    W. Wei, S. Cui, L. Ding, L. Mi, W. Chen, X. Hu, Urchin-like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for ultrahigh-rate electrochemical supercapacitors: structural evolution from solid to hollow. ACS Appl. Mater. Interfaces 9(46), 40655–40670 (2017)

    CAS  PubMed  Google Scholar 

  39. 39.

    U.M. Patil, J.S. Sohn, S.B. Kulkarni, S.C. Lee, H.G. Park, K.V. Gurav, J.H. Kim, S.C. Jun, Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl. Mater. Interfaces 6(4), 2450–2458 (2014)

    CAS  PubMed  Google Scholar 

  40. 40.

    Y. Zhang, Y. Yang, L. Yu, X. Meng, F. Wen, J. Zhang, H. Bi, X. Wang, J. Zhu, A facile solvent regulated method for phase control of two-dimensional nickel-cobalt hydroxide nanosheets: towards improved performance hybrid supercapacitors. Mater. Chem. Phys. 218, 172–181 (2018)

    CAS  Google Scholar 

  41. 41.

    Y. Zhang, W.D. Xue, H. Yin, D.X. He, R. Zhao, Design and synthesis of wool-like Co-Mg compound@NiMoO4 nanosheet material for high performance supercapacitors. Compos A Appls 107, 271–281 (2018)

    CAS  Google Scholar 

  42. 42.

    Z.B. Zhai, K.J. Huang, X. Wu, Superior mixed Co-Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47, 89–95 (2018)

    CAS  Google Scholar 

  43. 43.

    A. Jayakumar, R.P. Antony, J. Zhao, J.M. Lee, MOF-derived nickel and cobalt metal nanoparticles in a N-doped coral shaped carbon matrix of coconut leaf sheath origin for high performance supercapacitors and OER catalysis. Electrochim. Acta 265, 336–347 (2018)

    CAS  Google Scholar 

  44. 44.

    P. Stelmachowski, A.H.A. Monteverde Videla, K. Ciura, S. Specchia, Oxygen evolution catalysis in alkaline conditions over hard templated nickel-cobalt based spinel oxides. Int. J. Hydrog. Energy 42(46), 27910–27918 (2017)

    CAS  Google Scholar 

  45. 45.

    Y. He, Q. Tan, L. Lu, J. Sokolowski, G. Wu, Metal-nitrogen-carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability. Electrochem. Energy Rev. 2(2), 231–251 (2019)

    CAS  Google Scholar 

  46. 46.

    F. Golmohammadi, H. Gharibi, S. Sadeghi, Synthesis and electrochemical characterization of binary carbon supported Pd3Co nanocatalyst for oxygen reduction reaction in direct methanol fuel cells. Int. J. Hydrog. Energy 41(18), 7373–7387 (2016)

    CAS  Google Scholar 

  47. 47.

    H. Gharibi, F. Golmohammadi, M. Kheirmand, Fabrication of MEA based on optimum amount of Co in PdxCo/C alloy nanoparticles as a new cathode for oxygen reduction reaction in passive direct methanol fuel cells. Electrochim. Acta 89, 212–221 (2013)

    CAS  Google Scholar 

  48. 48.

    J. Zhu, X. Youlong, J. Hu, L. Wei, J. Liu, M. Zheng, Facile synthesis of MnO 2 grown on nitrogen-doped carbon nanotubes for asymmetric supercapacitors with enhanced electrochemical performance. J. Power Sources 393, 135–144 (2018)

    CAS  Google Scholar 

  49. 49.

    D. Zha, Y. Fu, L. Zhang, J. Zhu, X. Wang, Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life. J. Power Sources 378, 31–39 (2018)

    CAS  Google Scholar 

  50. 50.

    H. Jia, Z. Wang, X. Zheng, J. Lin, H. Liang, Y. Cai, J. Qi, J. Cao, J. Feng, W. Fei, Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors. Chem. Eng. 351, 348–355 (2018)

    CAS  Google Scholar 

  51. 51.

    X. Tian, M. Zhou, M. Li, C. Tan, L. Liang, P. Su, Nitrogen-doped activated carbon as metal-free oxygen reduction catalyst for cost-effective rolling-pressed air-cathode in microbial fuel cells. Fuel 223, 422–430 (2018)

    CAS  Google Scholar 

  52. 52.

    M. Torkashvand, M.B. Gholivand, A. Taherpour, A. Boochani, A. Akhtar, Introduction of a carbon paste electrode based on nickel carbide for investigation of interaction between warfarin and vitamin K1. J. Pharm. Biomed. Anal. 139, 156–164 (2017)

    CAS  PubMed  Google Scholar 

  53. 53.

    A. Bora, K. Mohan, S. Doley, S.K. Dolui, Flexible asymmetric supercapacitor based on functionalized reduced graphene oxide aerogels with wide working potential window. ACS Appl. Mater. Interfaces 10(9), 7996–8009 (2018)

    CAS  PubMed  Google Scholar 

  54. 54.

    K. Li, Y. Huang, J. Liu, M. Sarfraz, P.O. Agboola, I. Shakir, Y. Xu, A three-dimensional graphene framework-enabled high-performance stretchable asymmetric supercapacitor. J. Mater. Chem. 6(4), 1802–1808 (2018)

    CAS  Google Scholar 

  55. 55.

    S. Jung, Y. Myung, B.N. Kim, I.G. Kim, I.-K. You, T. Kim, Activated biomass-derived graphene-based carbons for supercapacitors with high energy and power density. Sci. Rep. 8(1), 1915 (2018)

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    J. Chen, K. Fang, Q. Chen, J. Xu, C.P. Wong, Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 53, 337–344 (2018)

    CAS  Google Scholar 

  57. 57.

    Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    CAS  Google Scholar 

  58. 58.

    J. Hou, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3), 2556–2564 (2015)

    CAS  PubMed  Google Scholar 

  59. 59.

    P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu, Z. Lei, Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93, 315–324 (2015)

    CAS  Google Scholar 

  60. 60.

    S. Dutta, A. Bhaumik, K.C.W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7(11), 3574–3592 (2014)

    CAS  Google Scholar 

  61. 61.

    N.H. Basri, M. Deraman, S. Kanwal, I.A. Talib, J.G. Manjunatha, A.A. Aziz, R. Farma, Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues. Biomass Bioenergy 59, 370–379 (2013)

    CAS  Google Scholar 

  62. 62.

    L. Osmieri, A.H.A. Monteverde Videla, S. Specchia, Activity of Co–N multi walled carbon nanotubes electrocatalysts for oxygen reduction reaction in acid conditions. J. Power Sources 278, 296–307 (2015)

    CAS  Google Scholar 

  63. 63.

    H.-Y. Park, T.J. Shin, H.-I. Joh, J.H. Jang, D. Ahn, S.J. Yoo, Graphene-oxide-intercalated layered manganese oxides as an efficient oxygen reduction reaction catalyst in alkaline media. Electrochem. Commun. 41, 35–38 (2014)

    CAS  Google Scholar 

  64. 64.

    H. Sun, L. Cao, L. Lu, Bacteria promoted hierarchical carbon materials for high-performance supercapacitor. Energy Environ. Sci. 5(3), 6206–6213 (2012)

    CAS  Google Scholar 

  65. 65.

    H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. Tan, B. Zahiri, B.C. Olsen, C.M.B. Holt, D. Mitlin, Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett. 14(4), 1987–1994 (2014)

    CAS  PubMed  Google Scholar 

  66. 66.

    H. Deng, G. Li, H. Yang, J. Tang, J. Tang, Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem. Eng. 163(3), 373–381 (2010)

    CAS  Google Scholar 

  67. 67.

    M. Amiri, F. Golmohammadi, Biomass derived hierarchical 3D graphene framework for high performance energy storage devices. J. Electroanal. Chem., 113388 (2019)

  68. 68.

    W. Huang, H. Zhong, D. Li, P. Tang, Y. Feng, Reduced graphene oxide supported CoO/MnO2 electrocatalysts from layered double hydroxides for oxygen reduction reaction. Electrochim. Acta 173, 575–580 (2015)

    CAS  Google Scholar 

  69. 69.

    E. Barsoukov, J.R. Macdonald, Impedance spectroscopy; theory, experiment, and applications (Wiley Interscience Publications, 2005)

  70. 70.

    B. Sachin Kumar, S.K. Kalpathy, S. Anandhan, Synergism of fictitious forces on nickel cobaltite nanofibers: electrospinning forces revisited. Phys. Chem. Chem. Phys. 20(7), 5295–5304 (2018)

    CAS  PubMed  Google Scholar 

  71. 71.

    Y. Jiang, C. Tang, H. Zhang, T. Shen, C. Zhang, S. Liu, Hierarchical walnut-like Ni0.5Co0.5O hollow nanospheres comprising ultra-thin nanosheets for advanced energy storage devices. J. Mater. Chem. 5(12), 5781–5790 (2017)

    CAS  Google Scholar 

  72. 72.

    X. Xu, S. Chen, C. Xiao, K. Xi, C. Guo, S. Guo, S. Ding, D. Yu, R.V. Kumar, Rational design of NiCoO2@SnO2 heterostructure attached on amorphous carbon nanotubes with improved lithium storage properties. ACS Appl. Mater. Interfaces 8(9), 6004–6010 (2016)

    CAS  PubMed  Google Scholar 

  73. 73.

    A.A. Ensafi, S.E. Moosavifard, B. Rezaei, S.K. Kaverlavani, Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal–organic frameworks for high-performance asymmetric supercapacitors. J. Mater. Chem. 6(22), 10497–10506 (2018)

    CAS  Google Scholar 

  74. 74.

    K. Kakaei, A. Balavandi, Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode. J. Colloid Interface Sci. 490, 819–824 (2017)

    CAS  PubMed  Google Scholar 

  75. 75.

    D. Khalafallah, O.Y. Alothman, H. Fouad, K.A. Khalil, Nitrogen and carbon functionalized cobalt phosphide as efficient non-precious electrocatalysts for oxygen reduction reaction electrocatalysis in alkaline environment. J. Electroanal. Chem. 809, 96–104 (2018)

    CAS  Google Scholar 

  76. 76.

    F. Li, L. Li, W. Wang, J. Gao, A new facile approach to prepare reduced graphene oxide and MoO2/reduced graphene oxide as electrode materials for oxygen reduction reactions. J. Colloid Interface Sci. 519, 194–202 (2018)

    CAS  PubMed  Google Scholar 

  77. 77.

    H.I. Takako Toda, H. Uchida, M. Watanabez, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146(10), 3750–3756 (1999)

    Google Scholar 

  78. 78.

    J. McBreen, Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. Electrochem Soc 142(5), 1409–1422 (1995)

    Google Scholar 

  79. 79.

    S.-I. Pyun, S.-B. Lee, Effect of surface groups on the electrocatalytic behaviour of Pt–Fe–Co alloy-dispersed carbon electrodes in the phosphoric acid fuel cell. J. Power Sources 77(2), 170–177 (1999)

    CAS  Google Scholar 

  80. 80.

    Z.L. Xiong, A. Manthiram, Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. J. Electrochem. Soc. 152(4), A697–A703 (2005)

    CAS  Google Scholar 

  81. 81.

    A. Farzaneh, N. Saghatoleslami, E.K. Goharshadi, H. Gharibi, H. Ahmadzadeh, 3-D mesoporous nitrogen-doped reduced graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline fuel cells: role of π and lone pair electrons. Electrochim. Acta 222, 608–618 (2016)

    CAS  Google Scholar 

Download references


Support of this investigation by Islamic Azad University, Kermanshah Branch is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Farhad Golmohammadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golmohammadi, F., Amiri, M. Fabrication of MEA from Biomass-Based Carbon Nanofibers Composited with Nickel-Cobalt Oxides as a New Electrocatalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells. Electrocatalysis 11, 485–496 (2020). https://doi.org/10.1007/s12678-020-00607-w

Download citation


  • Biomass
  • Nanofiber composite
  • Oxygen reduction reaction
  • Oxygen evaluation reaction
  • Alkaline passive direct methanol fuel cells