Advertisement

Templated Synthesis of Carbon-Free Mesoporous Magnéli-Phase Titanium Suboxide

  • Yoshiyuki KurodaEmail author
  • Hikaru Igarashi
  • Takaaki Nagai
  • Teko W. Napporn
  • Koichi Matsuzawa
  • Shigenori Mitsushima
  • Ken-ichiro Ota
  • Akimitsu IshiharaEmail author
Letters
  • 53 Downloads

Abstract

Titanium suboxides, such as the Magnéli-phase TixO2x–1, have attracted much attention as candidates of stable electrode materials because of their high conductivity and stability. The synthesis of porous titanium suboxides with high surface area without the formation of residual carbon is important to achieve active and stable electrode materials. Here, the synthesis of mesoporous Magnéli-phase Ti6O11 without residual carbon is demonstrated for the first time by templating method, using a colloidal crystal template. Highly ordered mesoporous Magnéli-phase Ti6O11 was obtained by reduction of TiO2 framework within the template under H2 flow at 800 °C, followed by the removal of template with a sodium hydroxide solution. The BET surface area was 11 m2/g. The mesoporous Ti6O11 loaded with Pt nanoparticles deposited by the coaxial arc plasma deposition showed oxygen reduction reaction activity comparable to those of commercial Pt/C, though oxide support often reduces catalytic activity of supported Pt nanoparticles. Consequently, the mesoporous Ti6O11 is useful as a carbon-free electrochemical support material for various applications.

Graphical Abstract

Highly ordered carbon-free mesoporous Magnéli-phase titanium suboxide was successfully synthesized by the templating method, and it was useful as an electrochemical support for Pt nanoparticles deposited by the arc plasma deposition for oxygen reduction reaction.

Keywords

Mesoporous materials Magnéli-phase titanium suboxides Coaxial arc plasma deposition Catalyst supports Oxygen reduction reaction 

Notes

Acknowledgments

The authors thank Mr. Hirotaka Kajima and Mr. Wataru Shimabukuro for their experimental help.

Funding

This research was supported in part by Strategic International Research Cooperative Program, Japan Science and Technology Agency (JST), the New Energy and Industrial Technology Development Organization (NEDO), Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 17K06803, and Kato Foundation for Promotion of Science.

Supplementary material

12678_2019_544_MOESM1_ESM.pdf (841 kb)
ESM 1 (PDF 841 kb)

References

  1. 1.
    Y. Li, Z.-Y. Fu, B.-L. Su, Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22(22), 4634–4667 (2012)CrossRefGoogle Scholar
  2. 2.
    B.K. Pilapil, J. van Drunen, Y. Makonnen, D. Beauchemin, G. Jerkiewicz, B.D. Gates, Ordered porous electrodes by design: toward enhancing the effective utilization of platinum in electrocatalysis. Adv. Funct. Mater. 27(36), 1703171 (2017)CrossRefGoogle Scholar
  3. 3.
    K.H. Kangasniemi, D.A. Condit, T.D. Jarvi, Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J. Electrochem. Soc. 151(4), E125–E132 (2004)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, T. Brezesinski, M. Antonietti, B. Smarsly, Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity. ACS Nano 3(6), 1373–1378 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Kitahara, Y. Shimasaki, T. Matsuno, Y. Kuroda, A. Shimojima, H. Wada, K. Kuroda, Critical effect of Nb-doping on the formation of mesostructured TiO2 using silica colloidal crystals: highly ordered mesoporous Nb-doped TiO2 with single crystalline framework and plate-like Nb-doped TiO2 with ordered mesoscale dimples. Chem. Eur. J. 21(37), 13073–13079 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Reitz, J. Reinacher, P. Hartmann, T. Brezesinski, Polymer-templated ordered large-pore mesoporous anatase–rutile TiO2:Ta nanocomposite films: microstructure, electrical conductivity, and photocatalytic and photoelectrochemical properties. Catal. Today 225, 55–63 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, W. Ueda, Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. J. Mater. Chem. 20(9), 1811–1818 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Tominaka, A. Ishihara, T. Nagai, K. Ota, Noncrystalline titanium oxide catalysts for electrochemical oxygen reduction reactions. ACS Omega 2(8), 5209–5214 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Ishihara, C.M. Wu, T. Nagai, K. Ohara, K. Nakada, K. Matsuzawa, T. Napporn, M. Arao, Y. Kuroda, S. Tominaka, S. Mitsushima, H. Imai, K. Ota, Factors affecting oxygen reduction activity of Nb2O5-doped TiO2 using carbon nanotubes as support in acidic solution. Electrochim. Acta 283, 1779–1788 (2018)CrossRefGoogle Scholar
  10. 10.
    B. Xu, H.Y. Sohn, Y. Mohassab, Y. Lan, Structures, preparation and applications of titanium suboxides. RSC Adv. 6(83), 79706–79722 (2016)CrossRefGoogle Scholar
  11. 11.
    G. Chen, S.R. Bare, T.E. Mallouk, Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 149(8), A1092–A1099 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7(2), 183–188 (2005)CrossRefGoogle Scholar
  13. 13.
    H. Igarashi, A. Ishihara, T. Nagai, S. Tominaka, K. Matsuzawa, T.W. Napporn, S. Mitsushima, K. Ota, Reduced titanium oxide as carbon-free support of non-precious metal oxide-based cathodes for PEFCs. ECS Trans. 75(14), 863–868 (2016)CrossRefGoogle Scholar
  14. 14.
    A.A. Gusev, E.G. Avvakumov, O.B. Vinokurova, Synthesis of Ti4O7 Magneli phase using mechanical activation. Sci. Sinter. 35(3), 141–145 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Andersson, B. Collén, U. Kuylenstierna, A. Magnéli, Phase analysis studies on the titanium-oxygen system. Acta Chem. Scand. 11, 61641–61652 (1957)Google Scholar
  16. 16.
    G. Hasegawa, T. Sato, K. Kanamori, K. Nakano, T. Yajima, Y. Kobayashi, H. Kageyama, T. Abe, K. Nakanishi, Hierarchically porous monoliths based on N-doped reduced titanium oxides and their electric and electrochemical properties. Chem. Mater. 25(17), 3504–3512 (2013)CrossRefGoogle Scholar
  17. 17.
    D. Kundu, R. Black, E.J. Berg, L.F. Nazar, A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8(4), 1292–1298 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Ioroi, H. Kageyama, T. Akita, K. Yasuda, Formation of electro-conductive titanium oxide fine particles by pulsed UV laser irradiation. Phys. Chem. Chem. Phys. 12(27), 7529–7535 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Tominaka, Y. Tsujimoto, Y. Matsushita, K. Yamaura, Synthesis of nanostructured reduced titanium oxide: crystal structure transformation maintaining nanomorphology. Angew. Chem. Int. Ed. 50(32), 7418–7421 (2011)CrossRefGoogle Scholar
  20. 20.
    E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495(7440), 215–220 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Bagheri, Z.A.M. Hir, A.T. Yousefi, S.B.A. Hamid, Progress on mesoporous titanium dioxide: Synthesis, modification and applications. Microporous Mesoporous Mater. 218, 206–222 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Huang, B. Zhang, J. Bai, Y. Zhang, G. Wittstock, M. Wang, Y. Shen, Pt catalyst supported within TiO2 mesporous films for oxygen reduction reaction. Electrochim. Acta 130, 97–103 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Bauer, L. Chevallier, R. Hui, S. Cavaliere, J. Zhang, D. Jones, J. Rozière, Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells. Electrochim. Acta 77, 1–7 (2012)CrossRefGoogle Scholar
  24. 24.
    T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi, Periodic arrangement of silica nanospheres assisted by amino acids. J. Am. Chem. Soc. 128(42), 13664–13665 (2006)CrossRefGoogle Scholar
  25. 25.
    Y. Kuroda, Y. Yamauchi, K. Kuroda, Integrated structural control of cage-type mesoporous platinum possessing both tunable large mesopores and variable surface structures by block copolymer-assisted Pt deposition in a hard-template. Chem. Commun. 46, 1827–1829 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Kuroda, K. Kuroda, Morphosynthesis of nanostructured gold crystals by utilizing interstices in periodically arranged silica nanoparticles as a flexible reaction field. Angew. Chem. Int. Ed. 49(39), 6993–6997 (2010)CrossRefGoogle Scholar
  27. 27.
    Y. Kuroda, Y. Sakamoto, K. Kuroda, Selective cleavage of periodic mesoscale structures: two-dimensional replication of binary colloidal crystals into dimpled gold nanoplates. J. Am. Chem. Soc. 134(20), 8684–8692 (2012)CrossRefGoogle Scholar
  28. 28.
    N. Todoroki, T. Kato, T. Hayashi, S. Takahashi, T. Wadayama, Pt–Ninanoparticle-stacking thin film: highly active electrocatalysts for oxygen reduction reaction. ACS Catal. 5(4), 2209–2212 (2015)Google Scholar
  29. 29.
    K. Miyazawa, M. Yoshitake, Y. Tanaka, HRTEM analyses of the platinum nanoparticles prepared on graphite particles using coaxial arc plasma deposition. J. Nanopart. Res. 19(6), 191 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Agawa, M. Kunimatsu, T. Ito, Y. Kuwahara, H. Yamashita, Preparation of Pt/C catalyst by coaxial arc plasma deposition for polymer electrolyte membrane fuel cells. ECS Electrochem. Lett. 4(10), F57–F60 (2015)CrossRefGoogle Scholar
  31. 31.
    W. Yue, X. Xu, J.T.S. Irvine, P.S. Attidekou, C. Liu, H. He, D. Zhao, W. Zhou, Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chem. Mater. 21(12), 2540–2546 (2009)CrossRefGoogle Scholar
  32. 32.
    Y. Ohgi, A. Ishihara, K. Matsuzawa, S. Mitsushima, M. Matsumoto, H. Imai, K. Ota, Oxygen reduction reaction on tantalum oxide-based catalysts prepared from TaC and TaN. Electrochim. Acta 68, 192–197 (2012)CrossRefGoogle Scholar
  33. 33.
    Electroanalytical Chemistry A Series of Advances, by A. J. Bard. (Marcel Dekker, 1976), vol. 9, p. 48–57Google Scholar
  34. 34.
    Y. Le Page, P. Strobel, Structural chemistry of the Magnéli phases TinO2n–1, 4 ≤ n ≤ 9: II. Refinements and structural disscussion. J. Solid State Chem. 44(2), 273–281 (1982)CrossRefGoogle Scholar
  35. 35.
    Y. Senoo, K. Kakinuma, M. Uchida, H. Uchida, S. Deki, M. Watanabe, Improvements in electrical and electrochemical properties of Nb-doped SnO2–δ supports for fuel cell cathodes due to aggregation and Pt loading. RSC Adv. 4(61), 32180–32188 (2014)CrossRefGoogle Scholar
  36. 36.
    N. Markovic, H. Gasteiger, P.N. Ross, Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 144(5), 1591–1597 (1997)CrossRefGoogle Scholar
  37. 37.
    C. Wang, H. Daimon, Y. Lee, J. Kim, S. Sun, Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 129(22), 6974–6975 (2007)CrossRefGoogle Scholar
  38. 38.
    M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Green Hydrogen Research CenterYokohama National UniversityHodogaya-kuJapan
  2. 2.IC2MP UMR 7285 CNRS University of PoitiersPoitiers Cedex 09France
  3. 3.Institute of Advanced SciencesYokohama National UniversityHodogaya-kuJapan

Personalised recommendations