Skip to main content
Log in

Templated Synthesis of Carbon-Free Mesoporous Magnéli-Phase Titanium Suboxide

  • Letters
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Titanium suboxides, such as the Magnéli-phase TixO2x–1, have attracted much attention as candidates of stable electrode materials because of their high conductivity and stability. The synthesis of porous titanium suboxides with high surface area without the formation of residual carbon is important to achieve active and stable electrode materials. Here, the synthesis of mesoporous Magnéli-phase Ti6O11 without residual carbon is demonstrated for the first time by templating method, using a colloidal crystal template. Highly ordered mesoporous Magnéli-phase Ti6O11 was obtained by reduction of TiO2 framework within the template under H2 flow at 800 °C, followed by the removal of template with a sodium hydroxide solution. The BET surface area was 11 m2/g. The mesoporous Ti6O11 loaded with Pt nanoparticles deposited by the coaxial arc plasma deposition showed oxygen reduction reaction activity comparable to those of commercial Pt/C, though oxide support often reduces catalytic activity of supported Pt nanoparticles. Consequently, the mesoporous Ti6O11 is useful as a carbon-free electrochemical support material for various applications.

Highly ordered carbon-free mesoporous Magnéli-phase titanium suboxide was successfully synthesized by the templating method, and it was useful as an electrochemical support for Pt nanoparticles deposited by the arc plasma deposition for oxygen reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Y. Li, Z.-Y. Fu, B.-L. Su, Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22(22), 4634–4667 (2012)

    Article  CAS  Google Scholar 

  2. B.K. Pilapil, J. van Drunen, Y. Makonnen, D. Beauchemin, G. Jerkiewicz, B.D. Gates, Ordered porous electrodes by design: toward enhancing the effective utilization of platinum in electrocatalysis. Adv. Funct. Mater. 27(36), 1703171 (2017)

    Article  CAS  Google Scholar 

  3. K.H. Kangasniemi, D.A. Condit, T.D. Jarvi, Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J. Electrochem. Soc. 151(4), E125–E132 (2004)

    Article  CAS  Google Scholar 

  4. Y. Wang, T. Brezesinski, M. Antonietti, B. Smarsly, Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity. ACS Nano 3(6), 1373–1378 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. M. Kitahara, Y. Shimasaki, T. Matsuno, Y. Kuroda, A. Shimojima, H. Wada, K. Kuroda, Critical effect of Nb-doping on the formation of mesostructured TiO2 using silica colloidal crystals: highly ordered mesoporous Nb-doped TiO2 with single crystalline framework and plate-like Nb-doped TiO2 with ordered mesoscale dimples. Chem. Eur. J. 21(37), 13073–13079 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. C. Reitz, J. Reinacher, P. Hartmann, T. Brezesinski, Polymer-templated ordered large-pore mesoporous anatase–rutile TiO2:Ta nanocomposite films: microstructure, electrical conductivity, and photocatalytic and photoelectrochemical properties. Catal. Today 225, 55–63 (2014)

    Article  CAS  Google Scholar 

  7. M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, W. Ueda, Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. J. Mater. Chem. 20(9), 1811–1818 (2010)

    Article  CAS  Google Scholar 

  8. S. Tominaka, A. Ishihara, T. Nagai, K. Ota, Noncrystalline titanium oxide catalysts for electrochemical oxygen reduction reactions. ACS Omega 2(8), 5209–5214 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Ishihara, C.M. Wu, T. Nagai, K. Ohara, K. Nakada, K. Matsuzawa, T. Napporn, M. Arao, Y. Kuroda, S. Tominaka, S. Mitsushima, H. Imai, K. Ota, Factors affecting oxygen reduction activity of Nb2O5-doped TiO2 using carbon nanotubes as support in acidic solution. Electrochim. Acta 283, 1779–1788 (2018)

    Article  CAS  Google Scholar 

  10. B. Xu, H.Y. Sohn, Y. Mohassab, Y. Lan, Structures, preparation and applications of titanium suboxides. RSC Adv. 6(83), 79706–79722 (2016)

    Article  CAS  Google Scholar 

  11. G. Chen, S.R. Bare, T.E. Mallouk, Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 149(8), A1092–A1099 (2002)

    Article  CAS  Google Scholar 

  12. T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, K. Yasuda, Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7(2), 183–188 (2005)

    Article  CAS  Google Scholar 

  13. H. Igarashi, A. Ishihara, T. Nagai, S. Tominaka, K. Matsuzawa, T.W. Napporn, S. Mitsushima, K. Ota, Reduced titanium oxide as carbon-free support of non-precious metal oxide-based cathodes for PEFCs. ECS Trans. 75(14), 863–868 (2016)

    Article  CAS  Google Scholar 

  14. A.A. Gusev, E.G. Avvakumov, O.B. Vinokurova, Synthesis of Ti4O7 Magneli phase using mechanical activation. Sci. Sinter. 35(3), 141–145 (2003)

    Article  CAS  Google Scholar 

  15. S. Andersson, B. Collén, U. Kuylenstierna, A. Magnéli, Phase analysis studies on the titanium-oxygen system. Acta Chem. Scand. 11, 61641–61652 (1957)

    Google Scholar 

  16. G. Hasegawa, T. Sato, K. Kanamori, K. Nakano, T. Yajima, Y. Kobayashi, H. Kageyama, T. Abe, K. Nakanishi, Hierarchically porous monoliths based on N-doped reduced titanium oxides and their electric and electrochemical properties. Chem. Mater. 25(17), 3504–3512 (2013)

    Article  CAS  Google Scholar 

  17. D. Kundu, R. Black, E.J. Berg, L.F. Nazar, A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries. Energy Environ. Sci. 8(4), 1292–1298 (2015)

    Article  CAS  Google Scholar 

  18. T. Ioroi, H. Kageyama, T. Akita, K. Yasuda, Formation of electro-conductive titanium oxide fine particles by pulsed UV laser irradiation. Phys. Chem. Chem. Phys. 12(27), 7529–7535 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. S. Tominaka, Y. Tsujimoto, Y. Matsushita, K. Yamaura, Synthesis of nanostructured reduced titanium oxide: crystal structure transformation maintaining nanomorphology. Angew. Chem. Int. Ed. 50(32), 7418–7421 (2011)

    Article  CAS  Google Scholar 

  20. E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495(7440), 215–220 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. S. Bagheri, Z.A.M. Hir, A.T. Yousefi, S.B.A. Hamid, Progress on mesoporous titanium dioxide: Synthesis, modification and applications. Microporous Mesoporous Mater. 218, 206–222 (2015)

    Article  CAS  Google Scholar 

  22. D. Huang, B. Zhang, J. Bai, Y. Zhang, G. Wittstock, M. Wang, Y. Shen, Pt catalyst supported within TiO2 mesporous films for oxygen reduction reaction. Electrochim. Acta 130, 97–103 (2014)

    Article  CAS  Google Scholar 

  23. A. Bauer, L. Chevallier, R. Hui, S. Cavaliere, J. Zhang, D. Jones, J. Rozière, Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells. Electrochim. Acta 77, 1–7 (2012)

    Article  CAS  Google Scholar 

  24. T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi, Periodic arrangement of silica nanospheres assisted by amino acids. J. Am. Chem. Soc. 128(42), 13664–13665 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Kuroda, Y. Yamauchi, K. Kuroda, Integrated structural control of cage-type mesoporous platinum possessing both tunable large mesopores and variable surface structures by block copolymer-assisted Pt deposition in a hard-template. Chem. Commun. 46, 1827–1829 (2010)

    Article  CAS  Google Scholar 

  26. Y. Kuroda, K. Kuroda, Morphosynthesis of nanostructured gold crystals by utilizing interstices in periodically arranged silica nanoparticles as a flexible reaction field. Angew. Chem. Int. Ed. 49(39), 6993–6997 (2010)

    Article  CAS  Google Scholar 

  27. Y. Kuroda, Y. Sakamoto, K. Kuroda, Selective cleavage of periodic mesoscale structures: two-dimensional replication of binary colloidal crystals into dimpled gold nanoplates. J. Am. Chem. Soc. 134(20), 8684–8692 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. N. Todoroki, T. Kato, T. Hayashi, S. Takahashi, T. Wadayama, Pt–Ninanoparticle-stacking thin film: highly active electrocatalysts for oxygen reduction reaction. ACS Catal. 5(4), 2209–2212 (2015)

  29. K. Miyazawa, M. Yoshitake, Y. Tanaka, HRTEM analyses of the platinum nanoparticles prepared on graphite particles using coaxial arc plasma deposition. J. Nanopart. Res. 19(6), 191 (2017)

    Article  CAS  Google Scholar 

  30. Y. Agawa, M. Kunimatsu, T. Ito, Y. Kuwahara, H. Yamashita, Preparation of Pt/C catalyst by coaxial arc plasma deposition for polymer electrolyte membrane fuel cells. ECS Electrochem. Lett. 4(10), F57–F60 (2015)

    Article  CAS  Google Scholar 

  31. W. Yue, X. Xu, J.T.S. Irvine, P.S. Attidekou, C. Liu, H. He, D. Zhao, W. Zhou, Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chem. Mater. 21(12), 2540–2546 (2009)

    Article  CAS  Google Scholar 

  32. Y. Ohgi, A. Ishihara, K. Matsuzawa, S. Mitsushima, M. Matsumoto, H. Imai, K. Ota, Oxygen reduction reaction on tantalum oxide-based catalysts prepared from TaC and TaN. Electrochim. Acta 68, 192–197 (2012)

    Article  CAS  Google Scholar 

  33. Electroanalytical Chemistry A Series of Advances, by A. J. Bard. (Marcel Dekker, 1976), vol. 9, p. 48–57

  34. Y. Le Page, P. Strobel, Structural chemistry of the Magnéli phases TinO2n–1, 4 ≤ n ≤ 9: II. Refinements and structural disscussion. J. Solid State Chem. 44(2), 273–281 (1982)

    Article  Google Scholar 

  35. Y. Senoo, K. Kakinuma, M. Uchida, H. Uchida, S. Deki, M. Watanabe, Improvements in electrical and electrochemical properties of Nb-doped SnO2–δ supports for fuel cell cathodes due to aggregation and Pt loading. RSC Adv. 4(61), 32180–32188 (2014)

    Article  CAS  Google Scholar 

  36. N. Markovic, H. Gasteiger, P.N. Ross, Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 144(5), 1591–1597 (1997)

    Article  CAS  Google Scholar 

  37. C. Wang, H. Daimon, Y. Lee, J. Kim, S. Sun, Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 129(22), 6974–6975 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Hirotaka Kajima and Mr. Wataru Shimabukuro for their experimental help.

Funding

This research was supported in part by Strategic International Research Cooperative Program, Japan Science and Technology Agency (JST), the New Energy and Industrial Technology Development Organization (NEDO), Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 17K06803, and Kato Foundation for Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshiyuki Kuroda or Akimitsu Ishihara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 841 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuroda, Y., Igarashi, H., Nagai, T. et al. Templated Synthesis of Carbon-Free Mesoporous Magnéli-Phase Titanium Suboxide. Electrocatalysis 10, 459–465 (2019). https://doi.org/10.1007/s12678-019-00544-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00544-3

Keywords

Navigation