Skip to main content

Advertisement

Log in

Porphyrin-Based Electrochemical H2 Evolution: Role of Central Metal Ion on Overpotential and Catalytic Activity

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Various transition metal complexes of porphyrins, M-meso-tetrakis-(p-NH2phenyl)porphyrins [where M = Fe, Co, Ni, and Cu] have been synthesized and employed for electrochemical H2 evolution studies. The effects of nature of central metal ion in H2 evolution activity and overpotential were explored by conducting activity study in DMSO using organic acid and H2O as a proton source. In organic acid (trifluoroacetic acid, TFA), the catalysis occurs at a potential close to M2+/M1+ redox couple only for Co and Cu while at a more –ve potential (close to M1+/M0 redox event) for Fe and Ni with activity order of Co > Fe > Cu > Ni. At low acid concentration catalytic efficiency (C.E) of 85%, observed rate constant (kobs) of 240 s−1 and a current enhancement (Icat/Ip) of 29 are obtained for Co complex. In neutral aqueous solution, high activities were also observed for Co and Fe complexes than others. Based on our results, the redox potential of central metal ion and thermodynamic reduction potential of a proton source seem to play roles in tuning catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Nippe, R.S. Khnayzer, J.A. Panetier, D.Z. Zee, B.S. Olaiya, M. Head-Gordon, C.J. Chang, F.N. Castellano, J.R. Long, Chem. Sci. 4, 3934 (2013)

    Article  CAS  Google Scholar 

  2. V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Angew. Chem. Int. Ed. 50, 7238 (2011)

    Article  CAS  Google Scholar 

  3. M. Rakowski Dubois, D.L. Dubois, Acc. Chem. Res. 42, 1974 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. M. Wang, L. Chen, L. Sun, Energy Environ. Sci. 5, 6763 (2012)

    Article  CAS  Google Scholar 

  5. P. Du, R. Eisenberg, Energy Environ. Sci. 5, 6012 (2012)

    Article  CAS  Google Scholar 

  6. Stillman, J. Am. Chem. Soc. 129, 1471 (2007)

    Article  CAS  Google Scholar 

  7. T. Nyokong, N4-macrocyclic metal complexes (Springer, 2006), p. 315

  8. S.C. Marinescu, J.R. Winkler, H.B. Gray, Proc. Natl. Acad. Sci. U. S. A. 109, 15127 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. X. Hu, B.S. Brunschwig, J.C. Peters, J. Am. Chem. Soc. 129, 8988 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. C.V. Krishnan, N. Sutin, J. Am. Chem. Soc. 103, 2141 (1981)

    Article  CAS  Google Scholar 

  11. V. Houlding, T. Geiger, U. Kolle, M. Gratzel, J. Chem. Soc. Chem. Commun. 681 (1982)

  12. B.B. Beyene, S.B. Mane, C.-H. Hung, Chem. Commun. 51, 15067 (2015)

    Article  CAS  Google Scholar 

  13. B.B. Beyene, S.B. Mane, M. Leonardus, C.-H. Hung, ChemistrySelect 2, 10565 (2017)

    Article  CAS  Google Scholar 

  14. J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 107, 4273 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. A. Volbeda, M.-H. Charon, C. Piras, E.C. Hatchikian, M. Frey, J.C. Fontecilla-Camps, Nature 373, 580 (1995)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Ohki, K. Yasumura, K. Kuge, S. Tanino, M. Ando, Z. Li, K. Tatsumi, Proc. Natl. Acad. Sci. U. S. A. 105, 7652 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. C. Tard, C.J. Pickett, Chem. Rev. 109, 2245 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. J.W. Tye, J. Lee, H.-W. Wang, R. Mejia-Rodriguez, J.H. Reibenspies, M.B. Hall, M.Y. Darensbourg, Inorg. Chem. 44, 5550 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. C. Topf, U. Monkowius, G. Knör, Inorg. Chem. Commun. 21, 147 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. F. Gärtner, A. Boddien, E. Barsch, K. Fumino, S. Losse, H. Junge, D. Hollmann, A. Brückner, R. Ludwig, M. Beller, Chem. Eur. J. 17, 6425 (2011)

    Article  PubMed  CAS  Google Scholar 

  21. J. Zhao, P.D. Tran, Y. Chen, J.S.C. Loo, J. Barber, Xu, Z. J. ACS Catal. 5, 4115 (2015)

    Article  CAS  Google Scholar 

  22. D. Sirbu, C. Turta, E.A. Gibson, A.C. Benniston, Dalton Trans. 44, 14646 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. P.D. Tran, M. Nguyen, S.S. Pramana, A. Bhattacharjee, S.Y. Chiam, J. Fize, M.J. Field, V. Artero, L.H. Wong, J. Loo, J. Barber, Energy Environ. Sci. 5, 8912 (2012)

    Article  CAS  Google Scholar 

  24. P. Zhang, M. Wang, Y. Yang, T. Yao, L. Sun, Angew. Chem. Int. Ed. 53, 13803 (2014)

    Article  CAS  Google Scholar 

  25. A. Datta, K. Das, B.B. Beyene, E. Garribba, M.J. Gajewska, C.-H. Hung, Mol. Catal. 439, 81 (2017)

    Article  CAS  Google Scholar 

  26. J.A.S. Roberts, R.M. Bullock, Inorg. Chem. 52, 3823 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff, The Journal of Organic Chemistry 32, 476 (1967)

    Article  CAS  Google Scholar 

  28. K.-L. Cheng, H.-W. Li, D.K.P. Ng, J. Organomet. Chem. 689, 1593 (2004)

    Article  CAS  Google Scholar 

  29. B. Zimmer, V. Bulach, C. Drexler, S. Erhardt, M.W. Hosseini, A. De Cian, New J. Chem. 26, 43 (2002)

    Article  CAS  Google Scholar 

  30. E.C.A. Ojadi, H. Linschitz, M. Gouterman, R.I. Walter, J.S. Lindsey, R.W. Wagner, P.R. Droupadi, W. Wang, J. Phys. Chem. 97, 13192 (1993)

    Article  CAS  Google Scholar 

  31. M. Lan, H. Zhao, H. Yuan, C. Jiang, S. Zuo, Y. Jiang, Dyes Pigments 74, 357 (2007)

    Article  CAS  Google Scholar 

  32. J.P. Bigi, T.E. Hanna, W.H. Harman, A. Chang, C.J. Chang, Chem. Commun. 46, 958 (2010)

    Article  CAS  Google Scholar 

  33. J. Organomet. Chem. 694, IFC (2009)

  34. R.M. Bullock, A.M. Appel, M.L. Helm, Chem. Commun. 50, 3125 (2014)

    Article  CAS  Google Scholar 

  35. M.P. Stewart, M.-H. Ho, S. Wiese, M.L. Lindstrom, C.E. Thogerson, S. Raugei, R.M. Bullock, M.L. Helm, J. Am. Chem. Soc. 135, 6033 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. C. Canales, F. Varas-Concha, T.E. Mallouk, G. Ramírez, Appl. Catal. B Environ. 188, 169 (2016)

    Article  CAS  Google Scholar 

  37. C.H. Lee, D.K. Dogutan, D.G. Nocera, J. Am. Chem. Soc. 133, 8775 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. D.K. Dogutan, D.K. Bediako, D.J. Graham, C.M. Lemon, D.G. Nocera, J. Porphyrins Phthalocyanines 19, 1 (2015)

    Article  CAS  Google Scholar 

  39. E.S. Wiedner, A.M. Appel, D.L. DuBois, R.M. Bullock, Inorg. Chem. 52, 14391 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Hsiung Hung.

Electronic supplementary material

ESM 1

(DOCX 12036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyene, B.B., Hung, CH. Porphyrin-Based Electrochemical H2 Evolution: Role of Central Metal Ion on Overpotential and Catalytic Activity. Electrocatalysis 9, 689–696 (2018). https://doi.org/10.1007/s12678-018-0477-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0477-z

Keywords

Navigation