, Volume 9, Issue 5, pp 602–607 | Cite as

Electrocatalytic Cascade Reaction of Aldehydes and 4-Hydroxy-6-methyl-2H-pyran-2-one

  • Michail N. Elinson
  • Olga O. Sokolova
  • Alexander D. Korshunov
  • Fructuoso Barba
  • Belen Batanero
Original Research


The electrolysis of salicylaldehydes and 4-hydroxy-6-methyl-2H-pyran-2-one in an undivided cell in alcoholic media and in the presence of alkali metal halides results in rapid and efficient formation of the substituted 3-acetoacetylcoumarins in 85–93% product yields and 425–930% current efficiency. This novel chain electrocatalytic process reveals a “green” and advantageous route to functionalized 3-acetoacetylcoumarins having promising properties for the different biomedical and other practical applications. The analogous process with arylaldehydes leads to substituted 3,3′-(arylmethylene)bis(4-hydroxy-6-methyl-2H-pyran-2-ones). Thus, under mild conditions, this simple electrocatalytic system produces the electrochemically induced Knoevenagel condensation of aldehydes and 6-methyl-2H-pyran-2-one with either subsequent rearrangement in case of salicylaldehydes towards 3-acetoacetylcoumarins or further addition of 6-methyl-2H-pyran-2-one molecule in case of arylaldehydes, leading to substituted 3,3′-(arylmethylene)bis(4-hydroxy-6-methyl-2H-pyran-2-ones).

Graphical abstract


Electrocatalysis Cascade reaction Aldehydes 4-Hydroxy-6-methyl-2H-pyran-2-one 3-Acetoacetylcoumarins 


Funding Information

M. N. E. thanks the University of Alcala for the “Giner de los Rios” financial support. The study was financially supported by the University of Alcala (project no. CCGP2017/EXP-009) and the Council at President of the Russian Federation (project MD-380.2017.3).


  1. 1.
    R. Mahrwald, Modern Aldol Reactions, vol 1 and 2 (Wiley-VCH Verlag, Weinheim, 2004)CrossRefGoogle Scholar
  2. 2.
    C.H. Heathcock, in: B.M. Trost (Ed.), Comprehensive Organic Synthesis, vol. 2 Pergamon, Oxford (1991), Ch. 1.5., p. 133Google Scholar
  3. 3.
    T. Mukaiyama, Org. React. 28, 203 (1982)Google Scholar
  4. 4.
    K.C. Nicolaou, T. Montagnon, G. Vassilikogiannakis, C.J.N. Mathison, The Total Synthesis of Coleophomones B, C, and D. J. Am. Chem. Soc. 127(24), 8872–8888 (2005)CrossRefGoogle Scholar
  5. 5.
    C. Tsukano, D.R. Siegel, S.J. Danishefsky, Angew. Chem. Int. Ed. 46, 8840 (2007)Google Scholar
  6. 6.
    K. Rohr, R. Mahrwald, Adv. Synth. Catal. 350, 2877 (2008)CrossRefGoogle Scholar
  7. 7.
    C. Kontogiorgis, D.J. Hadjipavlou-Litina, Enzyme Inhib. Med. Chem. 18, 63 (2003)CrossRefGoogle Scholar
  8. 8.
    C. Spino, M. Dodier, S. Sotheeswaran, Bioorg. Med. Chem. Lett. 8, 3475 (1998)CrossRefGoogle Scholar
  9. 9.
    I. Kempen, D. Papapostolou, N. Thierry, L. Pochet, S. Counerotte, B. Masereel, J.M. Foidart, M.J. Reboud-Ravaux, A. Noel, B. Pirotte, Br. J. Cancer 88, 1111 (2003)CrossRefGoogle Scholar
  10. 10.
    S. Vilar, E. Quezada, L. Santana, E. Uriarte, M. Yanez, N. Fraiz, C. Alcaide, E. Cano, F. Orallo, Bioorg. Med. Chem. Lett. 16, 257 (2006)CrossRefGoogle Scholar
  11. 11.
    E. Quezada, G. Delogu, C. Picciau, L. Santana, G. Podda, F. Borges, V. Garcia-Moraes, D. Vina, F. Orallo, Molecules 15, 270 (2010)CrossRefGoogle Scholar
  12. 12.
    D.A. Horton, G.T. Bourne, M.L. Smythe, Chem. Rev. 103, 893 (2003)CrossRefGoogle Scholar
  13. 13.
    S.R. Trenor, A.R. Shultz, B.J. Love, T.E. Long, Chem. Rev. 104, 3059 (2004)CrossRefGoogle Scholar
  14. 14.
    G. He, X. Zhang, C. He, X. Zhao, C. Duan, Tetrahedron 66, 9762 (2010)CrossRefGoogle Scholar
  15. 15.
    A.I. Ilovaisky, V.M. Merkulova, M.N. Elinson, G.I. Nikishin, Russ. Chem. Rev. 81, 381 (2012)CrossRefGoogle Scholar
  16. 16.
    M.N. Elinson, E.O. Dorofeeva, A.N. Vereshchagin, G.I. Nikishin, Russ. Chem. Rev. 84, 485 (2015)CrossRefGoogle Scholar
  17. 17.
    M.N. Elinson, A.N. Vereshchagin, F.V. Ryzkov, Curr. Org. Chem. 21, 1427 (2017)CrossRefGoogle Scholar
  18. 18.
    M.N. Elinson, S.K. Feducovich, T.L. Lizunova, G.I. Nikishin, Tetrahedron 56, 3063 (2000)CrossRefGoogle Scholar
  19. 19.
    M.N. Elinson, A.I. Ilovaisky, V.M. Merkulova, F. Barba, B. Batanero, Tetrahedron 64, 5915 (2008)CrossRefGoogle Scholar
  20. 20.
    M.N. Elinson, V.M. Merkulova, A.I. Ilovaisky, A.O. Chizhov, P.A. Belyakov, F. Barba, B. Batanero, Electrochim. Acta 55, 2129 (2010)CrossRefGoogle Scholar
  21. 21.
    M.N. Elinson, A.S. Dorofeev, R.F. Nasybullin, S.K. Feducovich, G.I. Nikishin, Electrochim. Acta 53, 5033 (2008)CrossRefGoogle Scholar
  22. 22.
    M.N. Elinson, V.M. Merkulova, A.I. Ilovaisky, F. Barba, B. Batanero, Electrochim. Acta 56, 8219 (2011)CrossRefGoogle Scholar
  23. 23.
    M.N. Elinson, A.N. Vereshchagin, F.V. Ryzkov, Chem. Rec. 16, 1950 (2016)CrossRefGoogle Scholar
  24. 24.
    M.N. Elinson, R.F. Nasybullin, G.I. Nikishin, Electrocatal. 4, 56 (2013)CrossRefGoogle Scholar
  25. 25.
    X.S. Wang, Z.S. Zeng, V.V. Zhang, D.Q. Shi, S.J. Tu, J. Chem. Res. 30, 602 (2006)CrossRefGoogle Scholar
  26. 26.
    C. Shi, D.-Q. Shi, J. Chem. Res. 35, 585 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Proud, V. Sridharan, Tetrahedron Lett. 56, 6614 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.N. D. Zelinsky Institute of Organic ChemistryMoscowRussia
  2. 2.Department of Organic Chemistry and Inorganic ChemistryUniversity of AlcaláAlcalá de HenaresSpain
  3. 3.Instituto de Investigación Química “Andrés M. del Río” (IQAR)University of AlcaláAlcalá de HenaresSpain

Personalised recommendations