Advertisement

Electrocatalysis

, Volume 9, Issue 4, pp 514–525 | Cite as

Nanohexagonal Fe2O3 Electrode for One-Step Selective Monitoring of Dopamine and Uric Acid in Biological Samples

  • Mohammed Y. Emran
  • Mohamed A. Shenashen
  • Adel A. Abdelwahab
  • Mohamed Abdelmottaleb
  • Mohamed Khairy
  • Sherif A. El-Safty
Original Research
  • 397 Downloads

Abstract

Fabrication of nonenzymatic biosensors based on the nanomaterials for highly sensitive and selective detection of single or multiple molecules coexisting in one biological sample is extremely challenging. Design of the hierarchical nanohexagonal Fe2O3 platelets (HFP) via one-pot hydrothermal treatment was employed for selective signaling of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) with high sensitivity. Electrode design with the nanosized structure of parallel hexagonal platelets (20–40 nm), high surface area, multiactive site, smooth surface, and pore distribution inside/outside the surfaces renders excellent sensitivity and selectivity of DA and UA during the catalytic oxidation process. Simultaneous monitoring and selective signaling of DA and UA were successfully achieved by HFP with detection limits as low as 16 nM and 0.218 μM with a wide linear range from 1 to 200 μM and from 20 to 400 μM for DA and UA, respectively. HFP provides high stability and reproducibility with relative standard deviations in the range of 2.5–5.29% to monitor DA and UA. Furthermore, continuous monitoring of DA and UA in real human saliva/serum samples was realized with high sensitivity and selectivity. The designed HFP can be employed as a nonenzymatic biosensor for simultaneous detection of mono-bioactive molecules in the biological samples.

Graphical Abstract

The electrooxidation of DA and UA at the surfaces of Fe2O3.The electrocatalytic active sites bind with the DA and UA through hydrogen bonds at the surface of Fe2O3. Through the DPV or CV scanning, the electrooxidation of DA and UA proceeded and the oxidized form quinolone-DA and keto-UA were obtained with losing of 2e/2H+.

Keywords

Human blood serum Human saliva Nanohexagonal Fe2O3 platelet Hierarchical structure Dopamine Uric acid 

Supplementary material

12678_2018_468_MOESM1_ESM.docx (496 kb)
ESM 1 (DOCX 496 kb)

References

  1. 1.
    H. Shinohara, F. Wang, S.Z. Hossain, A convenient. Nat. Protoc. 3(10), 1639–1644 (2008)CrossRefGoogle Scholar
  2. 2.
    Y. Zhao, Y. Gao, D. Zhan, H. Liu, Q. Zhao, Y. Kou, Y. Shao, M. Li, Q. Zhuang, Z. Zhu, Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 66(1), 51–57 (2005)CrossRefGoogle Scholar
  3. 3.
    Y. Liu, J. Huang, H. Hou, T. You, Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode. Electrochem. Commun. 10(10), 1431–1434 (2008)CrossRefGoogle Scholar
  4. 4.
    T. Nakaminami, S.-i. Ito, S. Kuwabata, H. Yoneyama, Anal. Chem. 71, 1928 (1999)CrossRefGoogle Scholar
  5. 5.
    E. Popa, Y. Kubota, D.A. Tryk, A. Fujishima, Selective voltammetric and amperometric detection of uric acid with oxidized diamond film electrodes. Anal. Chem. 72(7), 1724–1727 (2000)CrossRefGoogle Scholar
  6. 6.
    T.-F. Kang, G.-L. Shen, R.-Q. Yu, Voltammetric behaviour of dopamine at nickel phthalocyanine polymer modified electrodes and analytical applications. Anal. Chim. Acta 354(1-3), 343–349 (1997)CrossRefGoogle Scholar
  7. 7.
    A.A. Abdelwahab, Y.-B. Shim, Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters. Sensors Actuators B Chem. 221, 659–665 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Cheng, H. Yan, Y. Lu, K. Qiu, X. Hou, J. Xu, L. Han, X. Liu, J.-K. Kim, Y. Luo, Mesoporous CuCo2O4nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J. Mater. Chem. A 3(18), 9769–9776 (2015)CrossRefGoogle Scholar
  9. 9.
    M.Y. Emran, H. Khalifa, H. Gomaa, M.A. Shenashen, N. Akhtar, M. Mekawy, A. Faheem, S.A. El-Safty, Hierarchical C-N doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Microchim. Acta 184(11), 4553–4562 (2017)CrossRefGoogle Scholar
  10. 10.
    M.Y. Emran, M. Mekawy, N. Akhtar, M.A. Shenashen, I.M. EL-Sewify, A. Faheem, S.A. El-Safty, Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosens. Bioelectron. 100, 122–131 (2018)CrossRefGoogle Scholar
  11. 11.
    M.Y. Emran, M.A. Shenashen, M. Mekawy, A.M. Azzam, N. Akhtar, H. Gomaa, M.M. Selim, A. Faheem, S.A. El-Safty, Ultrasensitive in-vitro monitoring of monoamine neurotransmitters from dopaminergic cells. Sensors Actuators B Chem. 259, 114–124 (2018)CrossRefGoogle Scholar
  12. 12.
    K. Ghanbari, M. Moloudi, Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal. Biochem. 512, 91–102 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Sumathi, C.V. Raju, P. Muthukumaran, J. Wilson, G. Ravi, Au–Pd bimetallic nanoparticles anchored on α-Fe2O3nonenzymatic hybrid nanoelectrocatalyst for simultaneous electrochemical detection of dopamine and uric acid in the presence of ascorbic acid. J. Mater. Chem. B 4(15), 2561–2569 (2016)CrossRefGoogle Scholar
  14. 14.
    J.-y. Sun, T. Gan, Y.-p. Deng, Z.-x. Shi, Z. Lv, Pt nanoparticles-functionalized hierarchically porous γ-Al2O3 hollow spheres based electrochemical sensor for ultrasensitive guaiacol detection. Sensors Actuators B Chem. 211, 339–345 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Hou, C. Xu, D. Zhao, J. Zhou, Facile fabrication of hierarchical nanoporous AuAg alloy and its highly sensitive detection towards dopamine and uric acid. Sensors Actuators B Chem. 225, 241–248 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Liu, P. She, J. Gong, W. Wu, S. Xu, J. Li, K. Zhao, A. Deng, A novel sensor based on electrodeposited Au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)–electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors Actuators B Chem. 221, 1542–1553 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Ojani, J.-B. Raoof, A.A. Maleki, S. Safshekan, Chin. J. Catal. 35, 423 (2014)CrossRefGoogle Scholar
  18. 18.
    Z. Yang, X. Zheng, J. Zheng, A facile one-step synthesis of Fe 2 O 3/nitrogen-doped reduced graphene oxide nanocomposite for enhanced electrochemical determination of dopamine. J. Alloys Compd. 709, 581–587 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Yu, H. Li, J. Lu, X. Zhang, N. Liu, X. Zhang, Hydrothermal synthesis of Fe2O3/graphene nanocomposite for selective determination of ascorbic acid in the presence of uric acid. Electrochim. Acta 158, 264–270 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Filik, A.A. Avan, S. Aydar, Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode. Arab. J. Chem. 9(3), 471–480 (2016)CrossRefGoogle Scholar
  21. 21.
    N. Akhtar, M.Y. Emran, M.A. Shenashen, H. Khalifa, T. Osaka, A. Faheem, T. Homma, H. Kawarada, S.A. El-Safty, J. Mater. Chem. B 5, 7985 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Li, X. Lin, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode. Sensors Actuators B Chem. 115(1), 134–139 (2006)CrossRefGoogle Scholar
  23. 23.
    N. Akhtar, S.A. El-Safty, M. Khairy, Chem. Aust. 2, 235 (2014)Google Scholar
  24. 24.
    N. Akhtar, S.A. El-Safty, M. Khairy, W.A. El-Said, Fabrication of a highly selective nonenzymatic amperometric sensor for hydrogen peroxide based on nickel foam/cytochrome c modified electrode. Sensors Actuators B Chem. 207, 158–166 (2015)CrossRefGoogle Scholar
  25. 25.
    D. Hassen, S.A. El-Safty, K. Tsuchiya, A. Chatterjee, A. Elmarakbi, M.A. Shenashen, M. Sakai, Sci. Rep. 6, 24330 (2016)CrossRefGoogle Scholar
  26. 26.
    D. Hassen, M. Shenashen, S. El-Safty, M. Selim, H. Isago, A. Elmarakbi, A. El-Safty, H. Yamaguchi, Nitrogen-doped carbon-embedded TiO 2 nanofibers as promising oxygen reduction reaction electrocatalysts. J. Power Sources 330, 292–303 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Khairy, S.A. El-Safty, Mesoporous NiO nanoarchitectures for electrochemical energy storage: influence of size, porosity, and morphology. RSC Adv. 3(45), 23801 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Khairy, S.A. El-Safty, M. Ismael, H. Kawarada, Mesoporous NiO nanomagnets as catalysts and separators of chemical agents. Appl. Catal. B 127, 1–10 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Zeng, C. Li, C. Tang, X.B. Zhang, G. Shen, R. Yu, The electrochemical properties of Co(TPP), tetraphenylborate modified glassy carbon electrode: application to dopamine and uric acid analysis. Electroanalysis 18(5), 440–448 (2006)CrossRefGoogle Scholar
  30. 30.
    N. Akhtar, S.A. ElSafty, M.E. Abdelsalam, H. Kawarada, Adv. Healthc. Mater. 4, 2110 (2015)CrossRefGoogle Scholar
  31. 31.
    N. Akhtar, S.A. El-Safty, M.E. Abdelsalam, M.A. Shenashen, H. Kawarada, Biosens. Bioelectron. 77, 656 (2016)CrossRefGoogle Scholar
  32. 32.
    D. Bruns, Detection of transmitter release with carbon fiber electrodes. Methods 33(4), 312–321 (2004)CrossRefGoogle Scholar
  33. 33.
    A.G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P.R. Mudimela, S.D. Shandakov, L.I. Nasibulina, S. Jani, E.I. Kauppinen, Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2(5), 373–379 (2009)CrossRefGoogle Scholar
  34. 34.
    S.A. El-Safty, M.A. Shenashen, M. Ismael, M. Khairy, Adv. Funct. Mater. 22, 3013 (2012)CrossRefGoogle Scholar
  35. 35.
    S.A. El-Safty, Synthesis, characterization and catalytic activity of highly ordered hexagonal and cubic composite monoliths. J. Colloid Interface Sci. 319(2), 477–488 (2008)CrossRefGoogle Scholar
  36. 36.
    S.A. El-Safty, M. Khairy, M.A. Shenashen, E. Elshehy, W. Warkocki, M. Sakai, Optical mesoscopic membrane sensor layouts for water-free and blood-free toxicants. Nano Res. 8(10), 3150–3163 (2015)CrossRefGoogle Scholar
  37. 37.
    S.A. El-Safty, Y. Kiyozumi, T. Hanaoka, F. Mizukami, Appl. Catal. A 121, 337 (2008)Google Scholar
  38. 38.
    S.A. El-Safty, M. Sakai, M.M. Selim, A.A. Alhamid, Mesotubular-structured hybrid membrane nanocontainer for periodical monitoring, separation, and recovery of cobalt ions from water. Chem. Asian J. 10(9), 1909–1918 (2015)CrossRefGoogle Scholar
  39. 39.
    S.A. El-Safty, M. Sakai, M.M. Selim, A.A. Hendi, Mesosponge optical sinks for multifunctional mercury ion assessment and recovery from water sources. ACS Appl. Mater. Interfaces 7(24), 13217–13231 (2015)CrossRefGoogle Scholar
  40. 40.
    S.A. El-Safty, M. Shenashen, Optical mesosensor for capturing of Fe(III) and Hg(II) ions from water and physiological fluids. Sensors Actuators B Chem. 183, 58–70 (2013)CrossRefGoogle Scholar
  41. 41.
    S.A. El-Safty, M. Shenashen, M. Khairy, Bioadsorption of proteins on large mesocage-shaped mesoporous alumina monoliths. Colloids Surf. B: Biointerfaces 103, 288–297 (2013)CrossRefGoogle Scholar
  42. 42.
    S.A. El-Safty, M. Shenashen, A. Shahat, Tailor-made micro-object optical sensor based on mesoporous pellets for visual monitoring and removal of toxic metal ions from aqueous media. Small 9(13), 2288–2296 (2013)CrossRefGoogle Scholar
  43. 43.
    S.A. El-Safty, M.A. Shenashen, N. Akhtar, M.M. Selim, W.M. Morsy, H. Yamaguchi, S. Kawada, A.A. Alhamid, N. Ohashi, I. Ichinose, Chem. Asian J. 12, 1952 (2017)CrossRefGoogle Scholar
  44. 44.
    M.S. Selim, A. Elmarakbi, A.M. Azzam, M.A. Shenashen, A.M. EL-Saeed, S.A. El-Safty, Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints. Prog. Org. Coat. 116, 21–34 (2018)CrossRefGoogle Scholar
  45. 45.
    M.S. Selim, M.A. Shenashen, A. Elmarakbi, A.M. El-Saeed, M.M. Selim, S.A. El-Safty, Sunflower oil-based hyperbranched alkyd/spherical ZnO nanocomposite modeling for mechanical and anticorrosive applications. RSC Adv. 7(35), 21796–21808 (2017)CrossRefGoogle Scholar
  46. 46.
    M.S. Selim, M.A. Shenashen, A. Elmarakbi, N.A. Fatthallah, S.-i. Hasegawa, S.A. El-Safty, Chem. Eng. J. 320, 653 (2017)CrossRefGoogle Scholar
  47. 47.
    M.A. Shenashen, S.A. El-Safty, M. Khairy, J. Porous. Mater. 20, 679 (2013)CrossRefGoogle Scholar
  48. 48.
    M.A. Shenashen, E. Elshehy, S.A. El-Safty, M. Khairy, Visual monitoring and removal of divalent copper, cadmium, and mercury ions from water by using mesoporous cubic Ia3d aluminosilica sensors. Sep. Purif. Technol. 116, 73–86 (2013)CrossRefGoogle Scholar
  49. 49.
    M.A. Shenashen, S.A. El-Safty, E.A. Elshehy, Monolithic scaffolds for highly selective ion sensing/removal of Co(ii), Cu(ii), and Cd(ii) ions in water. Analyst 139(24), 6393–6405 (2014)CrossRefGoogle Scholar
  50. 50.
    M.A. Shenashen, S.A. El-Safty, E.A. Elshehy, Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Part. Part. Syst. Charact. 31(3), 293–316 (2014)CrossRefGoogle Scholar
  51. 51.
    M.A. Shenashen, D. Hassen, S.A. El-Safty, H. Isago, A. Elmarakbi, H. Yamaguchi, Axially oriented tubercle vein and X-crossed sheet of N-Co 3 O 4 @C hierarchical mesoarchitectures as potential heterogeneous catalysts for methanol oxidation reaction. Chem. Eng. J. 313, 83–98 (2017)CrossRefGoogle Scholar
  52. 52.
    M.A. Shenashen, D. Hassen, S.A. El-Safty, M.M. Selim, N. Akhtar, A. Chatterjee, A. Elmarakbi, Adv. Mater. Interfaces 3, 1600743 (2016)CrossRefGoogle Scholar
  53. 53.
    M.A. Shenashen, S. Kawada, M.M. Selim, W.M. Morsy, H. Yamaguchi, A.A. Alhamid, N. Ohashi, I. Ichinose, S.A. El-Safty, Nano 9, 7947 (2017)Google Scholar
  54. 54.
    I.M. El-Sewify, M.A. Shenashen, A. Shahat, H. Yamaguchi, M.M. Selim, M.M. Khalil, S.A. El-Safty, Ratiometric fluorescent chemosensor for Zn2+ ions in environmental samples using supermicroporous organic-inorganic structures as potential platforms. ChemistrySelect 2(34), 11083–11090 (2017)CrossRefGoogle Scholar
  55. 55.
    A.M. Azzam, M.A. Shenashen, M.M. Selim, H. Yamaguchi, I.M. El-Sewify, S. Kawada, A.A. Alhamid, S.A. El-Safty, Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic(V) and chromium(VI) from aqueous solution. J. Phys. Chem. Solids 109, 78–88 (2017)CrossRefGoogle Scholar
  56. 56.
    A. Derbalah, S.A. El-Safty, M.A. Shenashen, N.A. Abdel Ghany, Mesoporous alumina nanoparticles as host tunnel-like pores for removal and recovery of insecticides from environmental samples. ChemPlusChem 80(7), 1119–1126 (2015)CrossRefGoogle Scholar
  57. 57.
    M.A. Shenashen, A. Derbalah, A. Hamza, A. Mohamed, S.A. El Safty, Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused byFusarium oxysporium. Pest Manag. Sci. 73(6), 1121–1126 (2017)CrossRefGoogle Scholar
  58. 58.
    D. De Faria, F. Lopes, Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib. Spectrosc. 45(2), 117–121 (2007)CrossRefGoogle Scholar
  59. 59.
    M.M. Rahman, A.M. Asiri, Development of ionic-sensor based on sono-chemically prepared low-dimensional β-Fe2O3 nanoparticles onto flat-gold electrodes by an electrochemical approach. Sens. Bio-Sensing Res. 4, 109–117 (2015)CrossRefGoogle Scholar
  60. 60.
    D. Hassan, S.A. El-Safty, K.A. Khalil, M. Dewidar, G. Abu El-Maged, Int. J. Electrochem. Sci. 11, 8374 (2016)CrossRefGoogle Scholar
  61. 61.
    M. Khairy, S.A. El-Safty, Nanosized rambutan-like nickel oxides as electrochemical sensor and pseudocapacitor. Sensors Actuators B Chem. 193, 644–652 (2014)CrossRefGoogle Scholar
  62. 62.
    D. Buttry, A. Bard, Electroanalytical chemistry, vol 17 (Marcel Dekker, New York, 1991)Google Scholar
  63. 63.
    P. Zuman, R.N. Adams, Electrochemistry at solid electrodes: M. Dekker, New York, xiii+ 402, Elsevier, (1970)Google Scholar
  64. 64.
    H. Ibrahim, Y. Temerk, Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J. Electroanal. Chem. 780, 176–186 (2016)CrossRefGoogle Scholar
  65. 65.
    K. Schwab, G. Heubel, H. Bartels, Eur. J. Clin. Chem. Clin. Biochem. J. Forum Eur. Clin. Chem. Soc, 541–544 (1992)Google Scholar
  66. 66.
    S.A. El-Safty, S. Abdellatef, M. Ismael, A. Shahat, Adv. Healthc. Mater. 2, 854 (2013)CrossRefGoogle Scholar
  67. 67.
    H. Gomaa, H. Khalifa, M. Selim, M. Shenashen, S. Kawada, A.S. Alamoudi, A. Azzam, A. Alhamid, S.A. El-Safty, Selective, photoenhanced trapping/detrapping of arsenate anions using mesoporous blobfish head TiO2 monoliths. ACS Sustain. Chem. Eng. 5(11), 10826–10839 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammed Y. Emran
    • 1
    • 2
  • Mohamed A. Shenashen
    • 1
  • Adel A. Abdelwahab
    • 2
  • Mohamed Abdelmottaleb
    • 2
  • Mohamed Khairy
    • 1
  • Sherif A. El-Safty
    • 1
    • 3
  1. 1.Research Centre for Functional MaterialsNational Institute for Materials Science (NIMS)Tsukuba-shiJapan
  2. 2.Chemistry Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  3. 3.Faculty of Engineering and Advanced ManufacturingUniversity of SunderlandSunderlandUK

Personalised recommendations