Skip to main content
Log in

The Native Oxide on Titanium Metal as a Conductive Model Substrate for Oxygen Reduction Reaction Studies

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Very thin Pt layers on inexpensive substrates are promising oxygen reduction reaction (ORR) catalysts for polymer electrolyte fuel cells (PEFCs). TiOx is considered a suitable substrate but shows problems with conductivity, thus masking chemical effects by semiconductor effects (mismatch in energy states hindering electron transport). The native oxide on metallic Ti (TiOx/Ti) has been used as a novel and promising model substrate for ORR studies eliminating semiconductor effects. A high-coverage “particle” layer with high specific ORR activity was formed via electrodeposition from Ar-saturated solution. While high specific activities could be demonstrated, the concept could not be enhanced to high mass activities by limiting the Pt deposition amount. The approach to quench Pt deposition by introducing CO failed due to its adsorption to the TiOx/Ti substrate before metal deposition and thus the prevention of layer formation. A similar approach for the Pt/Au codeposition was also unsuccessful manifesting the TiOx/Ti-CO incompatibility even further.

CO, blessing, and curse: Pt deposition from Ar-saturated solution leads to a “film”-like deposit with high specific ORR activity. In contrast, the corresponding CO-saturated solution leads to deposition termination but a smooth monolayer is not formed due to interaction of CO with the TiOx/Ti substrate and, consequently, very low ORR activity is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2(21), 7933 (2012)

    Article  CAS  Google Scholar 

  3. M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. D.F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X.F. Zhang, M.K. Debe, R.T. Atanasoski, N.M. Markovic, V.R. Stamenkovic, Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat. Mater. 11(12), 1051–1058 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. M. Nesselberger, M. Roefzaad, R. Fayçal Hamou, P. Ulrich Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12(10), 919–924 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. I.Harkness, J.Sharman, M.Bosund, T.Geppert, H.El-Sayed, H. A.Gasteiger, G.Ercolano, S.Cavaliere, D.Jones, J. Roziere, Demonstration of Pt-catalysed non-carbon support with higher mass activity than conventional Pt/C nanoparticles and in excess of 0.15 A/Mg Pt, 2014

  7. I.Harkness, J.Sharman, Fibrous Pt catalysts created with ALD-deposited Pt on oxide, carbide or nitride surface tie layers where the Pt deposits extend over the surface in large contiguous islands or as continuous film, 2014

  8. S.M. Alia, B.A. Larsen, S. Pylypenko, D.A. Cullen, D.R. Diercks, K.C. Neyerlin, S.S. Kocha, B.S. Pivovar, Platinum-Coated Nickel Nanowires as Oxygen-Reducing Electrocatalysts. ACS Catal. 4, 1114–1119 (2014)

    Article  CAS  Google Scholar 

  9. S. Proch, K. Kodama, S. Yoshino, N. Takahashi, N. Kato, Y. Morimoto, CO-Terminated Platinum Electrodeposition on Nb-Doped Bulk Rutile TiO2. Electrocatalysis 7(5), 362–375 (2016)

    Article  CAS  Google Scholar 

  10. G. A.Somorjai, Y.Li, Introduction to Surface Chemistry and Catalysis, Second Edition, (John Wiley & Sons, Inc., 2010)

  11. S.R. Brankovic, J.X. Wang, R.R. Adžić, Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci. 474(1-3), L173–L179 (2001)

    Article  CAS  Google Scholar 

  12. K. Sasaki, Y. Mo, J.X. Wang, M. Balasubramanian, F. Uribe, J. McBreen, R.R. Adzic, Pt submonolayers on metal nanoparticles—novel electrocatalysts for H2 oxidation and O2 reduction. Electrochim. Acta 48(25-26), 3841–3849 (2003)

    Article  CAS  Google Scholar 

  13. Y. Liu, D. Gokcen, U. Bertocci, T.P. Moffat, Self-terminating growth of platinum films by electrochemical deposition. Science 338(6112), 1327–1330 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. Y.-J. Deng, V. Tripkovic, J. Rossmeisl, M. Arenz, Oxygen reduction reaction on Pt overlayers deposited onto a gold film: ligand, strain, and ensemble effect. ACS Catal. 6(2), 671–676 (2016)

    Article  CAS  Google Scholar 

  15. S. Brimaud, R.J. Behm, Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy. J. Am. Chem. Soc. 135(32), 11716–11719 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. J. Speder, L. Altmann, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, The particle proximity effect: from model to high surface area fuel cell catalysts. RSC Adv. 4(29), 14971 (2014)

    Article  CAS  Google Scholar 

  17. J. Speder, L. Altmann, M. Roefzaad, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, Pt based PEMFC catalysts prepared from colloidal particle suspensions—a toolbox for model studies. Phys. Chem. Chem. Phys. 15(10), 3602–3608 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. S. Proch, K. Kodama, M. Inaba, K. Oishi, N. Takahashi, Y. Morimoto, The “particle proximity effect” in three dimensions: a case study on Vulcan XC 72R. Electrocatalysis 7(3), 249–261 (2016)

    Article  CAS  Google Scholar 

  19. J. Speder, I. Spanos, A. Zana, J.J.K. Kirkensgaard, K. Mortensen, L. Altmann, M. Bäumer, M. Arenz, From single crystal model catalysts to systematic studies of supported nanoparticles. Surf. Sci. 631, 278–284 (2015)

    Article  CAS  Google Scholar 

  20. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-i. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107(10), 3904–3951 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal., B 56(1-2), 9–35 (2005)

    Article  CAS  Google Scholar 

  22. J. Parrondo, T. Han, E. Niangar, C. Wang, N. Dale, K. Adjemian, V. Ramani, Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles. Proc. Natl. Acad. Sci. U. S. A. 111(1), 45–50 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. A.Michaelis, in Advances in Electrochemical Science and Engineering, ed. By R. C.Alkire, D. M.Kolb, J.Lipkowski,P. N.Ross (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), p. 1

  24. N.P. Subramanian, S.P. Kumaraguru, H. Colon-Mercado, H. Kim, B.N. Popov, T. Black, D.A. Chen, Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes. J. Power Sources 157(1), 56–63 (2006)

    Article  CAS  Google Scholar 

  25. K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114(19), 9385–9454 (2014)

    Article  PubMed  Google Scholar 

  26. M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Effect of tin oxides on oxide formation and reduction of platinum particles. Electrochem. Solid-State Lett. 10(1), F1 (2007)

    Article  CAS  Google Scholar 

  27. B.E. Hayden, Acc. Chem. Res. 46 (1858, 2013)

  28. B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, The influence of support and particle size on the platinum catalysed oxygen reduction reaction. Phys. Chem. Chem. Phys. 11(40), 9141–9148 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. D. Schäfer, C. Mardare, A. Savan, M.D. Sanchez, B. Mei, W. Xia, M. Muhler, A. Ludwig, W. Schuhmann, High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction. Anal. Chem. 83(6), 1916–1923 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. C.A. Koval, J.N. Howard, Electron transfer at semiconductor electrode-liquid electrolyte interfaces. Chem. Rev. 92(3), 411–433 (1992)

    Article  CAS  Google Scholar 

  31. C. Kim, S. Kim, J. Choi, J. Lee, J.S. Kang, Y.-E. Sung, J. Lee, W. Choi, J. Yoon, Blue TiO2 nanotube array as an oxidant generating novel anode material fabricated by simple cathodic polarization. Electrochim. Acta 141, 113–119 (2014)

    Article  CAS  Google Scholar 

  32. R.T. Tung, Mater. Sci.Eng., R 35, 1 (2001)

    Article  Google Scholar 

  33. H. Gerischer, The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 35(11-12), 1677–1699 (1990)

    Article  CAS  Google Scholar 

  34. H.Gerischer, in Top. Appl. Phys., ed. By B. O.Seraphin (Springer, Berlin-Heidelberg, 1979), p. 115

  35. R. Hahn, F. Schmidt-Stein, J. Salonen, S. Thiemann, Y. Song, J. Kunze, V.-P. Lehto, P. Schmuki, Semimetallic TiO2 nanotubes. Angew. Chem. Int. Ed. 48(39), 7236–7239 (2009)

    Article  CAS  Google Scholar 

  36. S. Proch, S. Yoshino, N. Kato, N. Takahashi, Y. Morimoto, Titania nanotube arrays (TNAs) as support for oxygen reduction reaction (ORR) platinum thin film catalysts. Electrocatalysis 7(6), 451–465 (2016)

    Article  CAS  Google Scholar 

  37. S. Proch, S. Yoshino, I. Gunjishima, S. Kosaka, N. Takahashi, N. Kato, K. Kodama, Y. Morimoto, Acetylene-treated titania nanotube arrays (TNAs) as support for oxygen reduction reaction (ORR) platinum thin film catalysts. Electrocatalysis 8(4), 351–365 (2017)

    Article  CAS  Google Scholar 

  38. M.S. Chen, D.W. Goodman, The structure of catalytically active gold on titania. Science 306(5694), 252–255 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. S. Proch, S. Yoshino, N. Takahashi, S. Kosaka, K. Kodama, Y. Morimoto, CO-terminated Pt/Au codeposition on titania nanotube arrays (TNAs). Electrocatalysis 8(5), 480–491 (2017)

    Article  CAS  Google Scholar 

  40. D.W. Goodman, Model catalysts: from imagining to imaging a working surface. J. Catal. 216(1-2), 213–222 (2003)

    Article  CAS  Google Scholar 

  41. J.W. Schultze, M.M. Lohrengel, Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim. Acta 45(15-16), 2499–2513 (2000)

    Article  CAS  Google Scholar 

  42. M.Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions,2 (National Association of Corrosion Engineers, 1974)

  43. P. Schmuki, From Bacon to barriers: a review on the passivity of metals and alloys. J. Solid State Electrochem. 6(3), 145–164 (2002)

    Article  CAS  Google Scholar 

  44. A.K. Sharma, Anodizing titanium for space applications. Thin Solid Films 208(1), 48–54 (1992)

    Article  CAS  Google Scholar 

  45. J. Biedrzycki, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, Fluorine- and niobium-doped TiO2: chemical and spectroscopic properties of polycrystalline n-type-doped anatase. J. Phys. Chem. C 118(16), 8462–8473 (2014)

    Article  CAS  Google Scholar 

  46. J. F.Moulder, W. F.Stickle, P. E.Sobol, K. D. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy, (Physical Electronics, Inc., 1995)

  47. D.S. Ghosh, Basics of ultrathin metal films and their use as transparent electrodes (Springer International Publishing, Heidelberg, 2013)

    Book  Google Scholar 

  48. Z.H. Lu, J.P. McCaffrey, B. Brar, G.D. Wilk, R.M. Wallace, L.C. Feldman, S.P. Tay, SiO2 film thickness metrology by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 71(19), 2764–2766 (1997)

    Article  CAS  Google Scholar 

  49. S. Muhammad Rizwan, H. Seppo, T. Jari, IOP Conf Ser Mater Sci Eng 60, 012008 (2014)

    Article  CAS  Google Scholar 

  50. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82(15), 6321–6328 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. D. Sazou, K. Saltidou, M. Pagitsas, Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochim. Acta 76, 48–61 (2012)

    Article  CAS  Google Scholar 

  52. C. Rüdiger, F. Maglia, S. Leonardi, M. Sachsenhauser, I.D. Sharp, O. Paschos, J. Kunze, Surface analytical study of carbothermally reduced titania films for electrocatalysis application. Electrochim. Acta 71, 1–9 (2012)

    Article  CAS  Google Scholar 

  53. A. Linsebigler, G. Lu, J.T. Yates, J. Chem. Phys. 103(21), 9438–9443 (1995)

    Article  CAS  Google Scholar 

  54. W. Göpel, G. Rocker, R. Feierabend, Intrinsic defects of TiO2(110): interaction with chemisorbed O2, H2, CO, and CO2. Phys. Rev. B 28(6), 3427–3438 (1983)

    Article  Google Scholar 

  55. G.B. Raupp, J.A. Dumesic, Adsorption of carbon monoxide, carbon dioxide, hydrogen, and water on titania surfaces with different oxidation states. J. Phys. Chem. 89(24), 5240–5246 (1985)

    Article  CAS  Google Scholar 

  56. A. J.Bard, L. R.Faulkner, Electrochemical Methods—Fundamentals and Applications, Second Edition, (John Wiley & Sons, Inc., New York, 2001)

  57. X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc. 130(1), 370–381 (2008)

    Article  CAS  PubMed  Google Scholar 

  58. S. Trasatti, O.A. Petrii, Pure Appl. Chem. 63, 711 (1991)

    Article  CAS  Google Scholar 

  59. J.C. Calabrese, L.F. Dahl, P. Chini, G. Longoni, S. Martinengo, Synthesis and structural characterization of platinum carbonyl cluster dianions bis, tris, tetrakis, or pentakis (tri-.mu.2-carbonyl-tricarbonyltriplatinum)(2-). New series of inorganic oligomers. J. Am. Chem. Soc. 96(8), 2614–2616 (1974)

    Article  CAS  Google Scholar 

  60. G. Longoni, P. Chini, Synthesis and chemical characterization of platinum carbonyl dianions [Pt3(CO)6]n2- (n = .apprx.10,6,5,4,3,2,1). A new series of inorganic oligomers. J. Am. Chem. Soc. 98(23), 7225–7231 (1976)

    Article  CAS  Google Scholar 

  61. H. Inada, D. Su, R.F. Egerton, M. Konno, L. Wu, J. Ciston, J. Wall, Y. Zhu, Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms. Ultramicroscopy 111(7), 865–876 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. G.N. Derry, P.N. Ross, High coverage states of oxygen adsorbed on Pt(100) and Pt(111) surfaces. Surf. Sci. 140(1), 165–180 (1984)

    Article  CAS  Google Scholar 

  63. L. Calvillo, D. Fittipaldi, C. Rüdiger, S. Agnoli, M. Favaro, C. Valero-Vidal, C. Di Valentin, A. Vittadini, N. Bozzolo, S. Jacomet, L. Gregoratti, J. Kunze-Liebhäuser, G. Pacchioni, G. Granozzi, Carbothermal transformation of TiO2 into TiOxCy in UHV: tracking intrinsic chemical stabilities. J. Phys. Chem. C 118(39), 22601–22610 (2014)

    Article  CAS  Google Scholar 

  64. T.L. Barr, S. Seal, J. Vac, Sci. Technol., A 13, 1239 (1995)

    CAS  Google Scholar 

  65. E. Wahlström, N. Lopez, R. Schaub, P. Thostrup, A. Rønnau, C. Africh, E. Lægsgaard, J.K. Nørskov, F. Besenbacher, Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). Phys. Rev. Lett. 90(2), 026101 (2003)

    Article  CAS  PubMed  Google Scholar 

  66. B.K. Min, W.T. Wallace, D.W. Goodman, Synthesis of a sinter-resistant, mixed-oxide support for Au nanoclusters†. J. Phys. Chem. B 108(38), 14609–14615 (2004)

    Article  CAS  Google Scholar 

  67. L.D. Burke, Platin. Met. Rev. 38, 166 (1994)

    CAS  Google Scholar 

  68. B.B. Blizanac, C.A. Lucas, M.E. Gallagher, M. Arenz, P.N. Ross, N.M. Marković, Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: the pH effect. J. Phys. Chem. B 108(2), 625–634 (2004)

    Article  CAS  Google Scholar 

  69. W.S. Baker, J.J. Pietron, M.E. Teliska, P.J. Bouwman, D.E. Ramaker, K.E. Swider-Lyons, Enhanced oxygen reduction activity in acid by tin-oxide supported Au nanoparticle catalysts. J. Electrochem. Soc. 153(9), A1702 (2006)

    Article  CAS  Google Scholar 

  70. B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, The influence of Pt particle size on the surface oxidation of titania supported platinum. Phys. Chem. Chem. Phys. 11(10), 1564–1570 (2009)

    Article  CAS  PubMed  Google Scholar 

  71. L. Timperman, A. Lewera, W. Vogel, N. Alonso-Vante, Nanostructured platinum becomes alloyed at oxide-composite substrate. Electrochem. Commun. 12(12), 1772–1775 (2010)

    Article  CAS  Google Scholar 

  72. W. Vogel, L. Timperman, N. Alonso-Vante, Probing metal substrate interaction of Pt nanoparticles: structural XRD analysis and oxygen reduction reaction. Appl. Catal., A 377(1-2), 167–173 (2010)

    Article  CAS  Google Scholar 

  73. L. Timperman, Y.J. Feng, W. Vogel, N. Alonso-Vante, Substrate effect on oxygen reduction electrocatalysis. Electrochim. Acta 55(26), 7558–7563 (2010)

    Article  CAS  Google Scholar 

  74. K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53(7), 3181–3188 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastian Proch or Yu Morimoto.

Electronic Supplementary Material

ESM 1

(DOCX 1002kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proch, S., Yoshino, S., Takahashi, N. et al. The Native Oxide on Titanium Metal as a Conductive Model Substrate for Oxygen Reduction Reaction Studies. Electrocatalysis 9, 608–622 (2018). https://doi.org/10.1007/s12678-018-0465-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0465-3

Keywords

Navigation