, Volume 9, Issue 4, pp 452–458 | Cite as

Hierarchical Ni3ZnN Hollow Microspheres as Stable Non-Noble Metal Electrocatalysts for Oxygen Reduction Reactions



Ternary nitrides are now being considered as one of the emerging advanced functional materials owing to characteristic features and remarkable physicochemical properties that have rationale to substitute precious metals in many applied areas. The present work is focused on Ni3ZnN hollow microspheres for the first time, synthesized by nitridation of the NiO/ZnO precursors in ammonia atmosphere. The precursors composed of 1 μm spheres were made through coordination of terephthalic acid (H2BDC) and Zn2+/Ni2+ cations by solvothermal treatment. The prepared bimetallic nitride is a new single crystalline ternary nitride that belongs to cubic crystal phase (space group Pm-3m, No. 221). Ni3ZnN hollow microspheres were applied as electrocatalyst for proficiently catalyzing the oxygen reduction reactions (ORR), and exhibited very good catalytic activity with the onset potential of 0.81 V versus RHE in alkaline media. After 2000 cycles, Ni3ZnN hollow microspheres show only a 14 mV negative shift in its half-wave potential, suggesting high stability for the ORR. Our current results can show that new ternary nitride is a potential electrocatalytic material for renewable energy resource.

Graphical Abstract

A new ternary metal nitride (Ni3ZnN) has been successfully synthesized through a direct nitridation of the NiO/ZnO hollow microsphere precursors. The prepared bimetallic nitride is a new single crystalline ternary nitride that belongs to cubic crystal phase (space group Pm-3m, No.221). Ni3ZnN were applied as electrocatalyst for proficiently catalyzing the oxygen reduction reaction, and exhibited very good catalytic activity and stability


MOFs Hollow microspheres Ternary nitrides Solvothermal ORR catalyst 



M. Yang would like to thank the National “Thousand Youth Talents” program of China and Ningbo 3315 program. Erum Pervaiz would like to thank the Talented Young Scientist Program (TYSP) by the Ministry of Science and Technology (MoST) China.

Funding information

This work is supported by National Natural Science Foundation of China through grant 21471147, the National Key Research and Development Program of China through grant 2016YFB0101205, 2016YFB0101200, and Liaoning Provincial Natural Science Foundation through grant 2014020087.


  1. 1.
    L. Han, S. Dong, E. Wang, Adv. Mater. 28, 9266–9291 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Wang, X. Wang, Small 11, 3097–3112 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, et al., ACS Catal. 5, 4643–4667 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 44, 2168–2201 (2015)CrossRefGoogle Scholar
  5. 5.
    Z.-J. Jiang, Z. Jiang, J. Mater. Chem. A 2, 14071–14081 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Wang, H.L. Xin, J. Zhu, S. Liu, Z. Wu, D. Wang, J. Mater. Chem. A 3, 1601–1608 (2015)CrossRefGoogle Scholar
  7. 7.
    W. Zeng, L. Wang, H. Shi, G. Zhang, K. Zhang, H. Zhang, et al., J. Mater. Chem. A 4, 8233–8241 (2016)CrossRefGoogle Scholar
  8. 8.
    H.L. Rongrong Chen, D. Chu, G. Wang, J. Phys. Chem. C 113, 20689–20697 (2009)CrossRefGoogle Scholar
  9. 9.
    H. Yang, J. Liu, J. Wang, C.K. Poh, W. Zhou, J. Lin, et al., Electrochim. Acta 216, 246–252 (2016)CrossRefGoogle Scholar
  10. 10.
    C. Pozo-Gonzalo, O. Kartachova, A.A.J. Torriero, P.C. Howlett, A.M. Glushenkov, D.M. Fabijanic, et al., Electrochim. Acta 103, 151–160 (2013)CrossRefGoogle Scholar
  11. 11.
    D.H. Zhongwei Chen, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 4, 3167–3192 (2011)CrossRefGoogle Scholar
  12. 12.
    B. Cao, J.C. Neuefeind, R.R. Adzic, Inorg. Chem. 54, 2128–2136 (2015)CrossRefGoogle Scholar
  13. 13.
    H. Yan, C. Tian, L. Wang, et al., Angew. Chem. Int. Ed. 54, 6325–6329 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, R. Ohnishi, E. Yoo, et al., J. Mater. Chem. 22, 15549–15555 (2012)CrossRefGoogle Scholar
  15. 15.
    L. Liu, X. Yang, N. Ma, Small 12, 1295–1301 (2016)CrossRefGoogle Scholar
  16. 16.
    L. An, W. Huang, N. Zhang, J. Mater. Chem. A 2, 62–65 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Zhao, L. Wang, P. Yu, Chem. Commun. 51, 12399–12402 (2015)CrossRefGoogle Scholar
  18. 18.
    B. Cao, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Inorg. Chem. 54, 2128–2136 (2015)CrossRefGoogle Scholar
  19. 19.
    G.C. Li, P.F. Liu, R. Liu, M. Liu, K. Tao, S.R. Zhu, et al., Dalton Trans. 45, 13311–13316 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Uehara, A. Uehara, K. Kozawa, T. Yamazaki, Y. Kimishima, C. Physica, Superconductivity 470, S688–S690 (2010)CrossRefGoogle Scholar
  21. 21.
    C. Li, W.G. Chen, F. Wang, S.F. Li, Q. Sun, S. Wang, et al., J. Appl. Phys. 105, 123921–123930 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Fang, Y.F. Yuan, L.K. Wang, H.L. Ni, H.L. Zhu, J.S. Gui, et al., Mater. Lett. 111, 1–4 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, C. Xie, D. Liu, X. Huang, J. Huo, S. Wang, ACS Appl. Mater. Interfaces 8, 18652–18657 (2016)CrossRefGoogle Scholar
  24. 24.
    P.S. Ying Xiao, M. Cao, ACS Nano 8, 7846–7857 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Yu, W. Gao, Z. Shen, Q. Zheng, H. Wu, X. Wang, et al., J. Mater. Chem. A 3, 16633–16641 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Mapa, C.S. Gopinath, Chem. Mater. 21, 351–359 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Li, Q. Wang, K. Liu, J. Jiang, D. Qian, J. Li, et al., Mater. Lett. 186, 189–192 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Environmental EngineeringChangchun University of Science and TechnologyChangchunPeople’s Republic of China
  2. 2.Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China
  5. 5.State key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  6. 6.School of chemical and Materials Engineering (SCME), Department of Chemical EngineeringNational University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations