Skip to main content

Advertisement

Log in

Hierarchical Ni3ZnN Hollow Microspheres as Stable Non-Noble Metal Electrocatalysts for Oxygen Reduction Reactions

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Ternary nitrides are now being considered as one of the emerging advanced functional materials owing to characteristic features and remarkable physicochemical properties that have rationale to substitute precious metals in many applied areas. The present work is focused on Ni3ZnN hollow microspheres for the first time, synthesized by nitridation of the NiO/ZnO precursors in ammonia atmosphere. The precursors composed of 1 μm spheres were made through coordination of terephthalic acid (H2BDC) and Zn2+/Ni2+ cations by solvothermal treatment. The prepared bimetallic nitride is a new single crystalline ternary nitride that belongs to cubic crystal phase (space group Pm-3m, No. 221). Ni3ZnN hollow microspheres were applied as electrocatalyst for proficiently catalyzing the oxygen reduction reactions (ORR), and exhibited very good catalytic activity with the onset potential of 0.81 V versus RHE in alkaline media. After 2000 cycles, Ni3ZnN hollow microspheres show only a 14 mV negative shift in its half-wave potential, suggesting high stability for the ORR. Our current results can show that new ternary nitride is a potential electrocatalytic material for renewable energy resource.

A new ternary metal nitride (Ni3ZnN) has been successfully synthesized through a direct nitridation of the NiO/ZnO hollow microsphere precursors. The prepared bimetallic nitride is a new single crystalline ternary nitride that belongs to cubic crystal phase (space group Pm-3m, No.221). Ni3ZnN were applied as electrocatalyst for proficiently catalyzing the oxygen reduction reaction, and exhibited very good catalytic activity and stability

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Han, S. Dong, E. Wang, Adv. Mater. 28, 9266–9291 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. S. Wang, X. Wang, Small 11, 3097–3112 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, et al., ACS Catal. 5, 4643–4667 (2015)

    Article  CAS  Google Scholar 

  4. Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 44, 2168–2201 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Z.-J. Jiang, Z. Jiang, J. Mater. Chem. A 2, 14071–14081 (2014)

    Article  CAS  Google Scholar 

  6. J. Wang, H.L. Xin, J. Zhu, S. Liu, Z. Wu, D. Wang, J. Mater. Chem. A 3, 1601–1608 (2015)

    Article  CAS  Google Scholar 

  7. W. Zeng, L. Wang, H. Shi, G. Zhang, K. Zhang, H. Zhang, et al., J. Mater. Chem. A 4, 8233–8241 (2016)

    Article  CAS  Google Scholar 

  8. H.L. Rongrong Chen, D. Chu, G. Wang, J. Phys. Chem. C 113, 20689–20697 (2009)

    Article  CAS  Google Scholar 

  9. H. Yang, J. Liu, J. Wang, C.K. Poh, W. Zhou, J. Lin, et al., Electrochim. Acta 216, 246–252 (2016)

    Article  CAS  Google Scholar 

  10. C. Pozo-Gonzalo, O. Kartachova, A.A.J. Torriero, P.C. Howlett, A.M. Glushenkov, D.M. Fabijanic, et al., Electrochim. Acta 103, 151–160 (2013)

    Article  CAS  Google Scholar 

  11. D.H. Zhongwei Chen, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 4, 3167–3192 (2011)

    Article  CAS  Google Scholar 

  12. B. Cao, J.C. Neuefeind, R.R. Adzic, Inorg. Chem. 54, 2128–2136 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. H. Yan, C. Tian, L. Wang, et al., Angew. Chem. Int. Ed. 54, 6325–6329 (2015)

    Article  CAS  Google Scholar 

  14. Y. Wang, R. Ohnishi, E. Yoo, et al., J. Mater. Chem. 22, 15549–15555 (2012)

    Article  CAS  Google Scholar 

  15. L. Liu, X. Yang, N. Ma, Small 12, 1295–1301 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. L. An, W. Huang, N. Zhang, J. Mater. Chem. A 2, 62–65 (2014)

    Article  CAS  Google Scholar 

  17. L. Zhao, L. Wang, P. Yu, Chem. Commun. 51, 12399–12402 (2015)

    Article  CAS  Google Scholar 

  18. B. Cao, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Inorg. Chem. 54, 2128–2136 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. G.C. Li, P.F. Liu, R. Liu, M. Liu, K. Tao, S.R. Zhu, et al., Dalton Trans. 45, 13311–13316 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. M. Uehara, A. Uehara, K. Kozawa, T. Yamazaki, Y. Kimishima, C. Physica, Superconductivity 470, S688–S690 (2010)

    Article  CAS  Google Scholar 

  21. C. Li, W.G. Chen, F. Wang, S.F. Li, Q. Sun, S. Wang, et al., J. Appl. Phys. 105, 123921–123930 (2009)

    Article  CAS  Google Scholar 

  22. J. Fang, Y.F. Yuan, L.K. Wang, H.L. Ni, H.L. Zhu, J.S. Gui, et al., Mater. Lett. 111, 1–4 (2013)

    Article  CAS  Google Scholar 

  23. Y. Wang, C. Xie, D. Liu, X. Huang, J. Huo, S. Wang, ACS Appl. Mater. Interfaces 8, 18652–18657 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. P.S. Ying Xiao, M. Cao, ACS Nano 8, 7846–7857 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Yu, W. Gao, Z. Shen, Q. Zheng, H. Wu, X. Wang, et al., J. Mater. Chem. A 3, 16633–16641 (2015)

    Article  CAS  Google Scholar 

  26. M. Mapa, C.S. Gopinath, Chem. Mater. 21, 351–359 (2009)

    Article  CAS  Google Scholar 

  27. J. Li, Q. Wang, K. Liu, J. Jiang, D. Qian, J. Li, et al., Mater. Lett. 186, 189–192 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. Yang would like to thank the National “Thousand Youth Talents” program of China and Ningbo 3315 program. Erum Pervaiz would like to thank the Talented Young Scientist Program (TYSP) by the Ministry of Science and Technology (MoST) China.

Funding

This work is supported by National Natural Science Foundation of China through grant 21471147, the National Key Research and Development Program of China through grant 2016YFB0101205, 2016YFB0101200, and Liaoning Provincial Natural Science Foundation through grant 2014020087.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangting Dong, Zhigang Shao or Minghui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Yuan, Y., Wang, J. et al. Hierarchical Ni3ZnN Hollow Microspheres as Stable Non-Noble Metal Electrocatalysts for Oxygen Reduction Reactions. Electrocatalysis 9, 452–458 (2018). https://doi.org/10.1007/s12678-018-0461-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0461-7

Keywords

Navigation