, Volume 9, Issue 3, pp 352–358 | Cite as

Excellent Performances of Modified RuOs Bimetallic Materials as Anode Catalysts for Polymer Electrolyte Membrane Fuel Cells

  • Min Jeong Kim
  • Ok-Hee Kim
  • In-Su Park
  • Yong-Hun Cho
  • Yung-Eun Sung
Original Research


Multicomponent catalysts such as RuOs/C binary electrocatalysts and Pt-modified RuOs/C (Pt-RuOs/C) ternary electrocatalysts were prepared using the sodium borohydride reduction method for use as anode materials in proton exchange membrane fuel cells (PEMFCs). The electrocatalyst particles, of size 3–4 nm, were uniformly dispersed on carbon supports and showed a similar performance to commercial Pt/C in single cell tests. In this study, we demonstrate the use of multicomponent materials with no Pt or a very low level of Pt as potential anode catalysts in an actual PEMFC device. The polarization test results showed that, when used in membrane-electrode assemblies (MEAs) within a PEMFC, the RuOs/C binary electrocatalysts exhibited a significantly enhanced electrochemical performance for hydrogen oxidation. In addition, Pt-RuOs/C revealed a similar performance to that of commercial Pt/C; the new electrocatalyst, in particular, showed excellent Pt mass activity. These results indicate that the RuOs/C catalyst is potentially an alternative anode electrocatalyst for PEMFCs.

Graphical Abstract


RuOs electrocatalyst Polymer electrolyte membrane fuel cell Hydrogen oxidation reaction Membrane electrode assembly 


Funding information

This work was supported by the Institute for Basic Science (IBS) in Korea (IBS-R006-D1). Y.-H. C. acknowledges financial support from the Basic Science Research Program (2016R1D1A3B03934752) through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education. This study was also supported by 2015 Research Grant from Kangwon National University.


  1. 1.
    W. Vielstich, A. Lamm, H.A. Gasteiger, Handbook of Fuel Cells Fundamentals Technology and Applications, vol 1 (Wiley, Chichester, 2003)Google Scholar
  2. 2.
    J.N. Tiwari, R.N. Tiwari, G. Singh, K.S. Kim, Nano Energy 2, 553 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Heinzel, V.M. Barragán, J. Power Sources 84, 70 (1999)CrossRefGoogle Scholar
  4. 4.
    A. Morozan, B. Jousselme, S. Palacin, Energy Environ. Sci. 4, 1238 (2011)CrossRefGoogle Scholar
  5. 5.
    Larminie J, Dicks AL. Fuel Cell Systems Explained. 2nd Edn. (Wiley, 2003)Google Scholar
  6. 6.
    Gasteiger HA, Panels JE, Yan SG, J Power Sources. 127162 (2004)Google Scholar
  7. 7.
    K.C. Neyerlin, W. Gu, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. B631, 154 (2007)Google Scholar
  8. 8.
    M. Shao, J. Power Sources 196, 2433 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Jong-Won, N.P. Branko, J. Solid State Electrochem. 11, 1355 (2007)CrossRefGoogle Scholar
  10. 10.
    K. Kwon, S.-A. Jin, K.H. Lee, D.J. You, C. Pak, Catal. Today 232, 175 (2014)CrossRefGoogle Scholar
  11. 11.
    X.G. Yang, C.Y. Wang, Appl. Phys. Lett. 86, 224104 (2005)CrossRefGoogle Scholar
  12. 12.
    H. Wu, J.G. Chen, J. Vac. Sci. Technol. A 21, 1488 (2003)CrossRefGoogle Scholar
  13. 13.
    R. Ganesan, J.S. Lee, Angew. Chem. Int. Ed. 44, 6557 (2005)CrossRefGoogle Scholar
  14. 14.
    D.J. Ham, Y.K. Kim, S.H. Han, J.S. Lee, Catal. Today 132, 117 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Pozio, L. Giorgi, E. Antolini, E. Passalacqua, Electrochim. Acta 46, 555 (2000)CrossRefGoogle Scholar
  16. 16.
    T.J. Schmidt, V. Stamenkovic, N.M. Markovic, P.M. Ross Jr., Electrochim. Acta 48, 3823 (2003)CrossRefGoogle Scholar
  17. 17.
    J. Uribe-Godínez, R.H. Castellanos, E. Borja-Arco, A. Altamirano-Gutiérrez, O. Jiménez-Sandoval, J. Power Sources 177, 286 (2008)CrossRefGoogle Scholar
  18. 18.
    O.-H. Kim, Y.-H. Cho, H.-Y. SH Kang, M. Park, J.W. Kim, D.Y. Lim, M.J. Chung, H. Lee, Y.-E. Choe, Sung, Nat. Commun. 4, 2473 (2013)Google Scholar
  19. 19.
    O.-H. Kim, Y.-H. Cho, D.Y. Chung, M.J. Kim, J.M. Yoo, J.E. Park, H. Choe, Y.-E. Sung, Sci. Rep. 5, 8376 (2015)CrossRefGoogle Scholar
  20. 20.
    Martin Silberberg, Principles of General Chemistry, 2nd Edn (McGraw-Hill Science 2009)Google Scholar
  21. 21.
    D. Eliche-Quesada, J.M. Mérida-Robles, E. Rodríguez-Castellón, A. Jiménez-López, Appl. Catal. A Gen. 279, 209 (2005)CrossRefGoogle Scholar
  22. 22.
    X. Chen, C. Si, Y. Gao, J. Frenzel, J. Sun, G. Eggeler, Z. Zhang, J. Power Sources 273, 324 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Ammam, E.B. Easton, J. Power Sources 215, 188 (2012)CrossRefGoogle Scholar
  24. 24.
    fN.R. Jana, L. Gearheart, C.J. Murphy, J. Phys. Chem. B 105, 4065 (2001)Google Scholar
  25. 25.
    N.R. Jana, L. Gearheart, C.J. Murphy, Adv. Mater. 13, 1389 (2001)CrossRefGoogle Scholar
  26. 26.
    J. Zhang, Y. Tang, C. Song, J. Zhang, H. Wang, J. Power Sources 163, 532 (2006)CrossRefGoogle Scholar
  27. 27.
    L.J.J. Janssen, J. Appl. Electrochem. 37, 1383 (2007)CrossRefGoogle Scholar
  28. 28.
    Jiujun Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers (Springer, 2008)Google Scholar
  29. 29.
    T. Bligaard, J.K. Nørskov, Electrochim. Acta 52, 5512 (2007)CrossRefGoogle Scholar
  30. 30.
    A.B. Laursen, A.S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O.L. Trinhammer, J. Rossmeisl, S. Dahl, J. Chem. Educ. 89, 1595 (2012)CrossRefGoogle Scholar
  31. 31.
    Harry E. Hoster, MRS Proc. 1388 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Center for Nanoparticle ResearchInstitute for Basic Science (IBS)SeoulRepublic of Korea
  2. 2.School of Chemical and Biological EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.Department of ScienceRepublic of Korea Naval AcademyChangwonRepublic of Korea
  4. 4.Mineral Resources Research Division, Resources Utilization Research CenterKorea Institute of Geoscience and Mineral ResourcesDaejeonRepublic of Korea
  5. 5.Department of Chemical EngineeringKangwon National UniversitySamcheokRepublic of Korea

Personalised recommendations